Digital Image Processing
Module 5: Part 2

Image Description and Representation

Image Representation and Description?

Objective:
To represent and describe information embedded in an image in other forms that are more suitable than the image itself.

Benefits:
- Easier to understand
- Require fewer memory, faster to be processed
- More “ready to be used”

What kind of information we can use?
- Boundary, shape
- Region
- Texture
- Relation between regions

Shape Representation by Using Chain Codes

Why we focus on a boundary?
The boundary is a good representation of an object shape and also requires a few memory.

Chain codes: represent an object boundary by a connected sequence of straight line segments of specified length and direction.

4-directional chain code

8-directional chain code

Examples of Chain Codes

Object boundary (resampling)

Boundary vertices

4-directional chain code

8-directional chain code

The First Difference of a Chain Codes

Problem of a chain code:
a chain code sequence depends on a starting point.
Solution: treat a chain code as a circular sequence and redefine the starting point so that the resulting sequence of numbers forms an integer of minimum magnitude.

The first difference of a chain code: counting the number of direction change (in counterclockwise) between 2 adjacent elements of the code.

Example:

<table>
<thead>
<tr>
<th>Chain code</th>
<th>The first difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 → 1</td>
<td>1</td>
</tr>
<tr>
<td>0 → 2</td>
<td>2</td>
</tr>
<tr>
<td>0 → 3</td>
<td>3</td>
</tr>
<tr>
<td>2 → 3</td>
<td>1</td>
</tr>
<tr>
<td>2 → 0</td>
<td>2</td>
</tr>
<tr>
<td>2 → 1</td>
<td>3</td>
</tr>
</tbody>
</table>

Example:

- a chain code: 10103322
- The first difference = 3133030
- Treating a chain code as a circular sequence, we get the first difference = 33133030

The first difference is rotational invariant.

Polygon Approximation

Represent an object boundary by a polygon

Object boundary

Minimum perimeter polygon

Minimum perimeter polygon consists of line segments that minimize distances between boundary pixels.
Polygon Approximation: Splitting Techniques

1. Find the line joining two extreme points
2. Find the farthest points from the line
3. Draw a polygon

Distance-Versus-Angle Signatures

Represent an 2-D object boundary in terms of a 1-D function of radial distance with respect to θ.

Boundary Segments

Concept: Partitioning an object boundary by using vertices of a convex hull.

Convex Hull Algorithm

Input: A set of points on a cornea boundary
Output: A set of points on a boundary of a convex hull of a cornea

1. Sort the points by x-coordinate to get a sequence p_1, p_2, \ldots, p_n
2. Put the points p_1 and p_2 in a list L_{upper} with p_1 as the first point
3. For $i = 3$ to n
4. Do append p_i to L_{upper}
5. While L_{upper} contains more than 2 points and the last 3 points in L_{upper} do not make a right turn
6. Do delete the middle point of the last 3 points from L_{upper}
7. Remove the first and the last points from L_{upper}
8. Append L_{lower} to L_{upper} resulting in the list L
9. Return L

Convex Hull Algorithm (cont.)

Skeletons

Medial axes (dash lines)

Obtained from thinning or skeletonizing processes.
Thinning Algorithm

Concept:
1. Do not remove end points
2. Do not break connectivity
3. Do not cause excessive erosion

Apply only to contour pixels: pixels “1” having at least one of its 8 neighbor pixels valued “0”

Notation:

Let

\[
\begin{align*}
N(p_i) &= p_2 + p_3 + \ldots + p_7 + p_9 \\
T(p_i) &= \text{the number of transition 0-1 in the ordered sequence } p_2, p_3, \ldots, p_7, p_8, p_9.
\end{align*}
\]

Example

\[
\begin{array}{ccc}
0 & 0 & 1 \\
1 & p_1 & 0 \\
1 & 0 & 1
\end{array}
\]

\[N(p_i) = 4, \quad T(p_i) = 3\]

Step 1. Mark pixels for deletion if the following conditions are true.

a) \(2 \leq N(p_i) \leq 6\)

b) \(T(p_i) = 1\)

c) \(p_2 \cdot p_4 \cdot p_6 = 0\)

d) \(p_2 \cdot p_4 \cdot p_6 = 0\)

(Apply to all border pixels)

Step 2. Delete marked pixels and go to Step 3.

Step 3. Mark pixels for deletion if the following conditions are true.

a) \(2 \leq N(p_i) \leq 6\)

(Apply to all border pixels)

b) \(T(p_i) = 1\)

c) \(p_2 \cdot p_4 \cdot p_6 = 0\)

d) \(p_2 \cdot p_4 \cdot p_6 = 0\)

Step 4. Delete marked pixels and repeat Step 1 until no change occurs.

Boundary Descriptors

1. Simple boundary descriptors:
 - Length of the boundary
 - The size of smallest circle or box that can totally enclosing the object

2. Shape number

3. Fourier descriptor

4. Statistical moments

Shape Number

Shape number of the boundary definition:
the first difference of smallest magnitude

The order n of the shape number:
the number of digits in the sequence

<table>
<thead>
<tr>
<th>Order 4</th>
<th>Order 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chain code: 0 3 2 1</td>
<td>0 0 3 2 2 1</td>
</tr>
<tr>
<td>Difference: 3 3 3 3</td>
<td>3 0 3 3 0 3</td>
</tr>
<tr>
<td>Shape no.: 3 3 3 3</td>
<td>0 3 3 0 3 3</td>
</tr>
</tbody>
</table>

Shape Number (cont.)

Shape numbers of order 4, 6 and 8

<table>
<thead>
<tr>
<th>Order 4</th>
<th>Order 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chain code: 0 3 2 1</td>
<td>0 0 3 2 2 1</td>
</tr>
<tr>
<td>Difference: 3 3 3 3</td>
<td>1 0 3 3 0 3</td>
</tr>
<tr>
<td>Shape no.: 3 3 3 3</td>
<td>0 3 3 0 3 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order 5</th>
<th>Order 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chain code: 0 3 3 2 2 1</td>
<td>0 0 3 3 2 2 1</td>
</tr>
<tr>
<td>Difference: 3 0 3 0 3 0</td>
<td>3 3 1 3 3 0 3</td>
</tr>
<tr>
<td>Shape no.: 0 3 3 0 3 3</td>
<td>0 0 3 3 0 3 3</td>
</tr>
</tbody>
</table>
Example: Shape Number

1. Original boundary
2. Find the smallest rectangle that fits the shape
3. Create grid
4. Find the nearest Grid.

Chain code:
0 0 0 3 2 2 2 3 2 2 2 1 2 1 1
First difference:
3 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0
Shape No.
0 0 0 3 1 0 3 0 1 3 0 0 3 1 3 0 3

Example: Fourier Descriptor

Fourier descriptor: view a coordinate (x, y) as a complex number (x = real part and y = imaginary part) then apply the Fourier transform to a sequence of boundary points.

Let s(k) be a coordinate of a boundary point k:

\[s(k) = x(k) + jy(k) \]

Fourier descriptor:

\[a(u) = \frac{1}{K} \sum_{k=0}^{K-1} e^{-j2\pi ku/K} \]

Fourier Descriptor Properties

Some properties of Fourier descriptors:

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Boundary</th>
<th>Fourier Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity</td>
<td>s(k) =</td>
<td>a(u)</td>
</tr>
<tr>
<td>Rotation</td>
<td>s(k) = s(k) e^{j \phi}</td>
<td>a(u) = a(u) e^{j \phi}</td>
</tr>
<tr>
<td>Translation</td>
<td>s(k) = s(k) + \Delta x</td>
<td>a(u) = a(u) + \Delta x a'(u)</td>
</tr>
<tr>
<td>Scaling</td>
<td>s(k) = s(k)</td>
<td>a(u) = \alpha a'(u)</td>
</tr>
<tr>
<td>Starting point</td>
<td>s(k) = s(k)</td>
<td>a(u) = a(u) e^{j \phi}</td>
</tr>
</tbody>
</table>

Statistical Moments

Definition: the \(n\)th moment

\[\mu_n = \sum_{i=1}^{L} (r_i - m)^n g(r_i) \]

where

\[m = \frac{\sum_{i=1}^{L} r_i g(r_i)}{\sum_{i=1}^{L} g(r_i)} \]

Example of moment:
The first moment = mean
The second moment = variance

Boundary segment

1. Convert a boundary segment into 1D graph
2. View a 1D graph as a PDF function
3. Compute the \(n\)th order moment of the graph

Fourier descriptor:

\[s(k) = x(k) + jy(k) \]

Boundary points

Reconstruction formula

\[s(k) = \frac{1}{K} \sum_{u=0}^{K-1} a(u) e^{j2\pi uk/K} \]

P is the number of Fourier coefficients used to reconstruct the boundary

Original (K = 44)

\(P = 2 \)
\(P = 4 \)
\(P = 8 \)
\(P = 16 \)
\(P = 32 \)
\(P = 64 \)

1D graph