CHAPTER 8

FIREWALLS

Firewalls can be an effective means of protecting a local system or network of systems from network-based security threats while at the same time affording access to the outside world via wide area networks and the Internet. We begin this chapter with an overview of the functionality and design principles of firewalls. Next, we address the issue of the security of the firewall itself and, in particular, the concept of a trusted system, or secure operating system.

Firewall Design Principles

Information systems in corporations, government agencies, and other organizations have undergone a steady evolution:

- Centralized data processing system, with a central mainframe supporting a number of directly connected terminals
- Local area networks (LANs) interconnecting PCs and terminals to each other and the mainframe
- Premises network, consisting of a number of LANs, interconnecting PCs, servers, and perhaps a mainframe or two
- Enterprise-wide network, consisting of multiple, geographically distributed premises networks interconnected by a private wide area network (WAN)
- Internet connectivity, in which the various premises networks all hook into the Internet and may or may not also be connected by a private WAN

Internet connectivity is no longer optional for organizations. The information and services available are essential to the organization. Moreover, individual users within the organization want and need Internet access, and if this is not provided via their LAN, they will use dial-up capability from their PC to an Internet service provider (ISP). However, while Internet access provides benefits to the organization, it enables the outside world to reach and interact with local network assets. This creates a threat to the organization. While it is possible to equip each workstation and server on the premises network with strong security features, such as intrusion protection, this is not a practical approach. Consider a network with hundreds or even thousands of systems, running a mix of various versions of UNIX, plus Windows. When security

flaw is discovered, each potentially affected system must be upgraded to fix that flaw. The alternative, increasingly accepted, is the firewall. The firewall is inserted between the premises network and the Internet to establish a controlled link and to erect an outer security wall or perimeter. The aim of this perimeter is to protect the premises network from Internet-based attacks and to provide a single choke point where security and audit can be imposed. The firewall may be a single computer system or a set of two or more systems that cooperate to perform the firewall function. In this section, we look first at the general characteristics of firewalls. Then we look at the types of firewalls currently in common use. Finally, we examine some of the most common firewall configurations.

Firewall Characteristics

lists the following design goals for a firewall:

All traffic from inside to outside, and vice versa, must pass through the firewall. This is achieved by physically blocking all access to the local network except via the firewall. Various configurations are possible, as explained later in this section.

1. Only authorized traffic, as defined by the local security policy, will be allowed to pass. Various types of firewalls are used, which

implement various types of security policies, as explained later in this section.

2. The firewall itself is immune to penetration. This implies that use of a trusted system with a secure operating system.

3.lists four general techniques that firewalls use to control access and enforce the site's security policy. Originally, firewalls

focused primarily on service control, but they have since evolved to provide all four:

Service control: Determines the types of Internet services that can be accessed, inbound or outbound. The firewall may filter traffic on the basis of IP address and TCP port number; may provide proxy software that receives and interprets each service request before passing it on; or may host the server software itself, such as a Web or mail service.

Direction control: Determines the direction in which particular service requests may be initiated and allowed to flow through the firewall.

User control: Controls access to a service according to which user is attempting to access it. This feature is typically applied to users inside the firewall perimeter (local users). It may also be

applied to incoming traffic from external users; the latter requires some form of secure authentication technology, such as is provided in IPSec.

Behavior control: Controls how particular services are used. For example, the firewall may filter e-mail to eliminate spam, or it enable external access to only a portion of the information on a local Web server.

Before proceeding to the details of firewall types and configurations, it is best to summarize what one can expect from a firewall. The following capabilities are within the scope of a firewall:

1. A firewall defines a single choke point that keeps unauthorized users out of the protected network, prohibits potentially vulnerable services from entering or leaving the network, and provides protection from various kinds of IP spoofing and routing attacks. The use of a single choke point simplifies security management because security capabilities are consolidated on a single system or set of systems.

2. A firewall provides a location for monitoring security-related events. Audits and alarms can be implemented on the firewall system.

3.A firewall is a convenient platform for several Internet functions that are not security related. These include a network address translator, which maps local addresses to Internet addresses, and a network management function that audits or logs Internet usage.

3.A firewall can serve as the platform for IPSec. Using the tunnel mode capability described the firewall can be used to implement virtual private networks.

Firewalls have their limitations, including the following:

1.The firewall cannot protect against attacks that bypass the firewall. Internal systems may have dial-out capability to connect to an ISP. An internal LAN may support a modem pool that provides dial-in capability for traveling employees and telecommuters.

2.The firewall does not protect against internal threats, such as a disgruntled employee or an employee who unwittingly cooperates with an external attacker.

3.The firewall cannot protect against the transfer of virus-infected programs or files. Because of the variety of operating systems and applications supported inside the perimeter, it would be impractical and perhaps impossible for the firewall to scan all incoming files, e-mail, and messages for viruses.

Types of Firewalls

Figure below illustrates the three common types of firewalls: packet filters, application-level gateways, and circuit-level gateways. We examine each of these in turn.

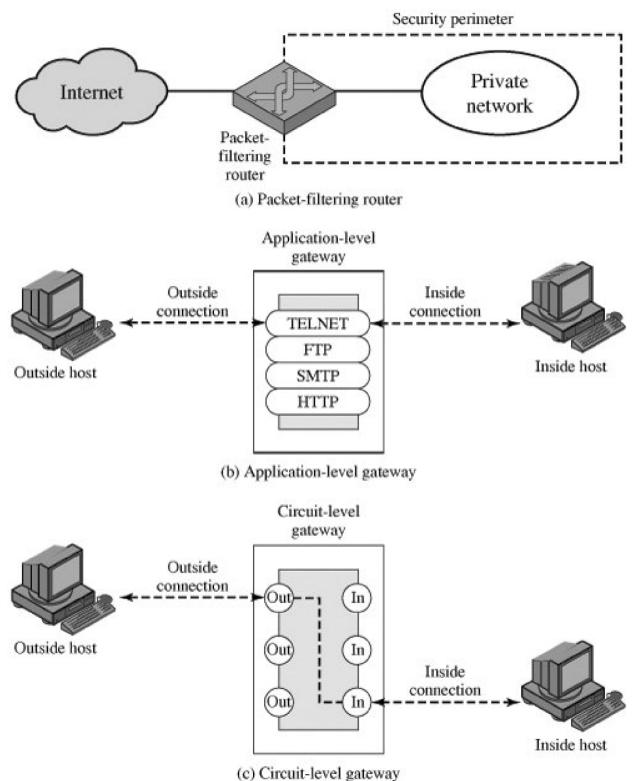


Figure 20.1. Firewall Types

Packet-Filtering Router

A packet-filtering router applies a set of rules to each incoming and outgoing IP packet and then forwards or discards the packet. The router is typically configured to filter packets going in both directions (from and to the internal network). Filtering rules are based on

information contained in a network packet:

Source IP address: The IP address of the system that originated the IP packet (e.g., 192.178.1.1) **Destination IP address:** The IP address of the system the IP packet is trying to reach (e.g., 192.168.1.2)

Source and destination transport-level address: The transport level (e.g., TCP or UDP) port number, which defines applications such as SNMP or TELNET

IP protocol field: Defines the transport protocol

Interface: For a router with three or more ports, which interface of the router the packet came from or which interface of the router the packet is destined for

The packet filter is typically set up as a list of rules based on matches to fields in the IP or TCP header. If there is a match to one of the rules, that rule is invoked to determine whether to forward or discard the packet. If there is no match to any rule, then a default action is taken. Two default policies are possible:

Default = *discard*: That which is not expressly permitted is prohibited.

Default = *forward*: That which is not expressly prohibited is permitted.

The default discard policy is more conservative. Initially, everything is blocked, and services must be added on a case-by-case basis. This policy is more visible to users, who are more likely to see the firewall as a hindrance. The default forward policy increases ease of use for

end users but provides reduced security; the security administrator must, in essence, react to each new security threat as it becomes known. from gives some examples of packet-filtering rule sets. In each set, the rules are applied top to bottom. The "*" in a field is a wildcard designator that matches everything. We assume that the default = discard policy is in force

One advantage of a packet-filtering router is its simplicity. Also, packet filters typically are transparent to users and are very fast. lists the following weaknesses of packet filter firewalls:

• Because packet filter firewalls do not examine upper-layer data, they cannot prevent attacks that employ application-specific vulnerabilities or functions. For example, a packet filter firewall cannot block specific application commands; if a packet filter

firewall allows a given application, all functions available within that application will be permitted.

- Because of the limited information available to the firewall, the logging functionality
 present in packet filter firewalls is limited.Packet filter logs normally contain the same
 information used to make access control decisions (source address, destinationaddress,
 and traffic type).
- Most packet filter firewalls do not support advanced user authentication schemes. Once again, this limitation is mostly due to the lack of upper-layer functionality by the firewall.
- They are generally vulnerable to attacks and exploits that take advantage of problems within the TCP/IP specification andprotocol stack, such as *network layer address spoofing*. Many packet filter firewalls cannot detect a network packet in which theOSI Layer 3 addressing information has been altered. Spoofing attacks are generally employed by intruders to bypass the security controls implemented in a firewall platform.
- Finally, due to the small number of variables used in access control decisions, packet filter firewalls are susceptible to securitybreaches caused by improper configurations. In other words, it is easy to accidentally configure a packet filter firewall to allow traffic types, sources, and destinations that should be denied based on an organization's information security policy.

Some of the attacks that can be made on packet-filtering routers and the appropriate countermeasures are the following:

IP address spoofing: The intruder transmits packets from the outside with a source IP address field containing an address of an internal host. The attacker hopes that the use of a spoofed address will allow penetration of systems that employ simplesource address security, in which packets from specific trusted internal hosts are accepted. The counte rmeasure is to discard packets with an inside source address if the packet arrives on an external interface.

Source routing attacks: The source station specifies the route that a packet should take as it crosses the Internet, in the hopes that this will bypass security measures that do not analyze the source routing information. The countermeasure is to discard all packets that use this option.

Tiny fragment attacks: The intruder uses the IP fragmentation option to create extremely small fragments and force the TCP header information into a separate packet fragment. This attack is

designed to circumvent filtering rules that depend on TCP header information. Typically, a packet filter will make a filtering decision on the first fragment of a packet. All subsequent fragments of that packet are filtered out solely on the basis that they are part of the packet whose first fragment was rejected. The attacker hopes that the filtering router examines only the first fragment and that the remaining fragments are passed through. A tiny fragment attack can be defeated by enforcing a rule that the first fragment of a packet must contain a predefined minimum amount of the transport header. If the first fragment is rejected, the filter can remember the packet and discard all subsequent fragments.

Application-Level Gateway

An application-level gateway, also called a proxy server, acts as a relay of application-level traffic. The user contacts the gateway using a TCP/IP application, such as Telnet or FTP, and the gateway asks the user for the name of the remote host to be accessed. When the user responds and provides a valid user ID and authentication information, the gateway contacts the application on the remote host and relays TCP segments containing the application data between the two endpoints. If the gateway does not implement the proxy code for a specific application, the service is not supported and cannot be forwarded across the firewall. Further, the gateway can be configured to support only specific features of an application that the network

Application-level gateways tend to be more secure than packet filters. Rather than trying to deal with the numerous possible combinations that are to be allowed and forbidden at the TCP and IP level, the application-level gateway need only scrutinize a few allowable applications. In addition, it is easy to log and audit all incoming traffic at the application level. A prime disadvantage of this type of gateway is the additional processing overhead on each connection. In effect, there are two spliced connections between the end users, with the gateway at the splice point, and the gateway must examine and forward all traffic in both directions.

administrator considers acceptable while denying all other features.

Circuit-Level Gateway

A third type of firewall is the circuit-level gateway. This can be a stand-alone system or it can be a specialized function performed by an application-level gateway for certain applications. A circuit-level gateway does not permit an end-to-end TCP connection; rather, the gateway sets up two TCP connections, one between itself and a TCP user on an inner host and one between itself and a TCP user on an outside host. Once the two connections are established, the gateway typically relays TCP segments from one connection to the other without examining the contents. The security function consists of determining which connections will be allowed. A typical use of circuit-level gateways is a situation in which the system administrator trusts the internal users. The gateway can be configured to support application-level or proxy service on inbound connections and circuit-level functions for outbound connections. In this configuration, the gateway can incur the processing overhead of examining incoming application data for forbidden functions but does not incur that overhead on outgoing data.

Bastion Host

A bastion host is a system identified by the firewall administrator as a critical strong point in the network's security. Typically, the bastion host serves as a platform for an application-level or circuit-level gateway. Common characteristics of a bastion host include the following:

- The bastion host hardware platform executes a secure version of its operating system, making it a trusted system.
- Only the services that the network administrator considers essential are installed on the bastion host. These include proxyapplications such as Telnet, DNS, FTP, SMTP, and user authentication.
- The bastion host may require additional authentication before a user is allowed access to the proxy services. In addition, each proxy service may require its own authentication before granting user access.Each proxy is configured to support only a subset of the standard application's command set.
- Each proxy is configured to allow access only to specific host systems. This means that the limited command/feature set may be applied only to a subset of systems on the protected network.
- Each proxy maintains detailed audit information by logging all traffic, each connection, and the duration of each connection.
- The audit log is an essential tool for discovering and terminating intruder attacks.
- Each proxy module is a very small software package specifically designed for network security. Because of its relative simplicity, it is easier to check such modules for security flaws. For example, a typical UNIX mail application may contain over 20,000 lines of code, while a mail proxy may contain fewer than 1000.

- Each proxy is independent of other proxies on the bastion host. If there is a problem with the operation of any proxy, or if a future vulnerability is discovered, it can be uninstalled without affecting the operation of the other proxy applications. Also, if the user population requires support for a new service, the network administrator can easily install the required proxy on the bastion host.
- A proxy generally performs no disk access other than to read its initial configuration file. This makes it difficult for an intruder to install Trojan horse sniffers or other dangerous files on the bastion host.
- Each proxy runs as a nonprivileged user in a private and secured directory on the bastion host.

Trusted Systems

One way to enhance the ability of a system to defend against intruders and malicious programs is to implement trusted system technology. This section provides a brief overview of this topic. We begin by looking at some basic concepts of data access control.

Data Access Control

Following successful logon, the user has been granted access to one or a set of hosts and applications. This is generally not sufficient for a system that includes sensitive data in its database. Through the user access control procedure, a user can be identified to the system.

Associated with each user, there can be a profile that specifies permissible operations and file accesses. The operating system can then enforce rules based on the user profile. The database management system, however, must control access to specific records or even portions of records. For example, it may be permissible for anyone in administration to obtain a list of company personnel, but only selected individuals may have access to salary information. The issue is more than just one of level of detail. Whereas the operating system may grant a user permission to access a file or use an application, following which there are no further security checks, the database management system must make a decision on each individual access attempt. That decision will depend not only on the user's identity but also on the specific parts of the data being accessed and even on the information already divulged to the user.

A general model of access control as exercised by a file or database management system is that of an **access matrix**.

The basic elements of the model are as follows:

- **Subject**: An entity capable of accessing objects. Generally, the concept of subject equates with that of process. Any user or application actually gains access to an object by means of a process that represents that user or application.
- **Object:** Anything to which access is controlled. Examples include files, portions of files, programs, and segments of memory.
- Access right: The way in which an object is accessed by a subject. Examples are read, write, and execute.

The Concept of Trusted Systems

Much of what we have discussed so far has been concerned with protecting a given message or item from passive or active attacks by a given user. A somewhat different but widely applicable requirement is to protect data or resources on the basis of levels of security. This is commonly found in the military, where information is categorized as unclassified (U), confidential (C), secret (S), top secret (TS), or beyond. This concept is equally applicable in other areas, where information can be organized into gross categories and users can be granted clearances to access certain categories of data. For example, the highest level of security might be for strategic corporate planning documents and data, accessible by only corporate officers and their staff; next might come sensitive financial and personnel data, accessible only by administration personnel, corporate officers, and so on.

A multilevel secure system must enforce the following:

No read up: A subject can only read an object of less or equal security level. This is referred to in the literature as the **simple Security Property**.

No write down: A subject can only write into an object of greater or equal security level. This is referred to in the literature as the *-**Property**(pronounced *star property*).

These two rules, if properly enforced, provide multilevel security. For a data processing system, the approach that has been taken, and has been the object of much research and development, is based on the *reference monitor* concept. This approach is depicted in Figure 20.4. The reference monitor is a controlling element in the hardware and operating system of a computer that regulates the access of subjects to objects on the basis of security parameters of the subject and

object. The reference monitor has access to a file, known as the *security kernel database*, that lists the access privileges (security clearance) of each subject and the protection attributes (classification level) of each object. The reference monitor enforces the security rules (no read up, no write down) and has the following properties:

Complete mediation: The security rules are enforced on every access, not just, for example, when a file is opened.

Isolation: The reference monitor and database are protected from unauthorized modification.

Verifiability: The reference monitor's correctness must be provable. That is, it must be possible to demonstrate mathematically that the reference monitor enforces the security rules and provides complete mediation and isolation.

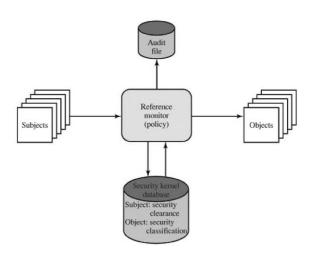


Figure 20.4. Reference Monitor Concept

These are stiff requirements. The requirement for complete mediation means that every access to data within main memory and on disk and tape must be mediated. Pure software implementations impose too high a performance penalty to be practical; the solution must be at least partly in hardware. The requirement for isolation means that it must not be possible for an attacker, no matter how clever, to change the logic of the reference monitor or the contents of the security kernel database. Finally, the requirement for mathematical proof is formidable for something as complex as a general-purpose computer. A system that can provide such verification is referred to as a **trusted system**. A final element illustrated in Figure 20.4 is an audit file. Important security events, such as detected security violations and authorized changes to the security kernel database, are stored in the audit file.