
Network Security Malicious Software

Department of Electronics & Communication Engineering, Canara Engineering College Page 1

Unit 7 Malicious Software

Viruses and Related Threats

Perhaps the most sophisticated types of threats to computer systems are presented by

programs that exploit vulnerabilities in computing systems.

Malicious software is software that is intentionally included or inserted in a system for a

harmful purpose.

Malicious software can be divided into two categories: those that need a host program, and

those that are independent. The former are essentially fragments of programs that cannot exist

independently of some actual application program, utility, or system program. Viruses, logic

bombs, and backdoors are examples. The latter are self-contained programs that can be

scheduled and run by the operating system. Worms and zombie programs are examples.

It can also differentiate between those software threats that do not replicate and those that do.

The former are programs or fragments of programs that are activated by a trigger. Examples

are logic bombs, backdoors, and zombie programs. The latter consist of either a program

fragment or an independent program that, when executed, may produce one or more copies of

itself to be activated later on the same system or some other system. Viruses and worms are

examples.

Backdoor

A backdoor, also known as a trapdoor, is a secret entry point into a program that allows

someone that is aware of the backdoor to gain access without going through the usual

security access procedures. Programmers have used backdoors legitimately for many years to

debug and test programs. This usually is done when the programmer is developing an

application that has an authentication procedure, or a long setup, requiring the user to enter

many different values to run the application. To debug the program, the developer may wish

to gain special privileges or to avoid all the necessary setup and authentication. The

programmer may also want to ensure that there is a method of activating the program should

something be wrong with the authentication procedure that is being built into the application.

The backdoor is code that recognizes some special sequence of input or is triggered by being

run from a certain user ID or by an unlikely sequence of events.

Network Security Malicious Software

Department of Electronics & Communication Engineering, Canara Engineering College Page 2

Backdoors become threats when unscrupulous programmers use them to gain unauthorized

access. The backdoor was the basic idea for the vulnerability portrayed in the movie War

Games. Another example is that during the development of Multics, penetration tests were

conducted by an Air Force "tiger team" (simulating adversaries). One tactic employed was to

send a bogus operating system update to a site running Multics. The update contained a

Trojan horse (described later) that could be activated by a backdoor and that allowed the tiger

team to gain access. The threat was so well implemented that the Multics developers could

not find it, even after they were informed of its presence.

It is difficult to implement operating system controls for backdoors. Security measures must

focus on the program development and software update activities.

Logic Bomb

One of the oldest types of program threat, predating viruses and worms, is the logic bomb.

The logic bomb is code embedded in some legitimate program that is set to "explode" when

certain conditions are met. Examples of conditions that can be used as triggers for a logic

bomb are the presence or absence of certain files, a particular day of the week or date, or a

particular user running the application. Once triggered, a bomb may alter or delete data or

entire files, cause a machine halt, or do some other damage. A example of how logic bombs

can be employed was the case of Tim Lloyd, who was convicted of setting a logic bomb that

cost his employer, Omega Engineering, more than $10 million, derailed its corporate growth

strategy, and eventually led to the layoff of 80 workers.

Trojan Horses

A Trojan horse is a useful, or apparently useful, program or command procedure containing

hidden code that, when invoked, performs some unwanted or harmful function.

Trojan horse programs can be used to accomplish functions indirectly that an unauthorized

user could not accomplish directly. For example, to gain access to the files of another user on

a shared system, a user could create a Trojan horse program that, when executed, changed the

invoking user's file permissions so that the files are readable by any user. The author could

then induce users to run the program by placing it in a common directory and naming it such

that it appears to be a useful utility. An example is a program that ostensibly produces a

listing of the user's files in a desirable format. After another user has run the program, the

Network Security Malicious Software

Department of Electronics & Communication Engineering, Canara Engineering College Page 3

author can then access the information in the user's files. An example of a Trojan horse

program that would be difficult to detect is a compiler that has been modified to insert

additional code into certain programs as they are compiled, such as a system login program.

The code creates a backdoor in the login program that permits the author to log on to the

system using a special password. This Trojan horse can never be discovered by reading the

source code of the login program.

Another common motivation for the Trojan horse is data destruction. The program appears to

be performing a useful function (e.g., a calculator program), but it may also be quietly

deleting the user's files. For example, a CBS executive was victimized by a Trojan horse that

destroyed all information contained in his computer's memory. The Trojan horse was

implanted in a graphics routine offered on an electronic bulletin board system.

Zombie

A zombie is a program that secretly takes over another Internet-attached computer and then

uses that computer to launch attacks that are difficult to trace to the zombie's creator.

Zombies are used in denial-of-service attacks, typically against targeted Web sites. The

zombie is planted on hundreds of computers belonging to unsuspecting third parties, and then

used to overwhelm the target Web site by launching an overwhelming onslaught of Internet

traffic.

The Nature of Viruses

A virus is a piece of software that can "infect" other programs by modifying them; the

modification includes a copy of the virus program, which can then go on to infect other

programs.

Biological viruses are tiny scraps of genetic codeDNA or RNAthat can take over the

machinery of a living cell and trick it into making thousands of flawless replicas of the

original virus. Like its biological counterpart, a computer virus carries in its instructional

code the recipe for making perfect copies of itself. The typical virus becomes embedded in a

program on a computer. Then, whenever the infected computer comes into contact with an

uninfected piece of software, a fresh copy of the virus passes into the new program. Thus, the

infection can be spread from computer to computer by unsuspecting users who either swap

disks or send programs to one another over a network. In a network environment, the ability

to access applications and system services on other computers provides a perfect culture for

the spread of a virus.

Network Security Malicious Software

Department of Electronics & Communication Engineering, Canara Engineering College Page 4

A virus can do anything that other programs do. The only difference is that it attaches itself to

another program and executes secretly when the host program is run. Once a virus is

executing, it can perform any function, such as erasing files and programs.

During its lifetime, a typical virus goes through the following four phases:

Dormant phase: The virus is idle. The virus will eventually be activated by some event, such

as a date, the presence of another program or file, or the capacity of the disk exceeding some

limit. Not all viruses have this stage.

Propagation phase: The virus places an identical copy of itself into other programs or into

certain system areas on the disk.

Each infected program will now contain a clone of the virus, which will itself enter a

propagation phase.

Triggering phase: The virus is activated to perform the function for which it was intended.

As with the dormant phase, the triggering phase can be caused by a variety of system events,

including a count of the number of times that this copy of the virus has made copies of itself.

Execution phase: The function is performed. The function may be harmless, such as a

message on the screen, or damaging, such as the destruction of programs and data files.

Most viruses carry out their work in a manner that is specific to a particular operating system

and, in some cases, specific to a particular hardware platform. Thus, they are designed to take

advantage of the details and weaknesses of particular systems.

Virus Structure

A virus can be prepended or postpended to an executable program, or it can be embedded in

some other fashion. The key to its operation is that the infected program, when invoked, will

first execute the virus code and then execute the original code of the program.

A very general depiction of virus structure is shown in Figure 19.1 In this case, the virus

code, V, is prepended to infected programs, and it is assumed that the entry point to the

program, when invoked, is the first line of the program.

Network Security Malicious Software

Department of Electronics & Communication Engineering, Canara Engineering College Page 5

Figure 19.1. A Simple Virus

An infected program begins with the virus code and works as follows. The first line of code is

a jump to the main virus program. The second line is a special marker that is used by the

virus to determine whether or not a potential victim program has already been infected with

this virus. When the program is invoked, control is immediately transferred to the main virus

program. The virus program first seeks out uninfected executable files and infects them.

Next, the virus may perform some action, usually detrimental to the system. This action could

be performed every time the program is invoked, or it could be a logic bomb that triggers

only under certain conditions. Finally, the virus transfers control to the original program. If

the infection phase of the program is reasonably rapid, a user is unlikely to notice any

difference between the execution of an infected and uninfected program.

A virus such as the one just described is easily detected because an infected version of a

program is longer than the corresponding uninfected one. A way to thwart such a simple

means of detecting a virus is to compress the executable file so that both the infected and

uninfected versions are of identical length. Figure 19.2 shows in general terms the logic

required. The key lines in this virus are numbered, and Figure 19.3 illustrates the operation.

We assume that program P1 is infected with the virus CV. When this program is invoked,

control passes to its virus, which performs the following steps:

Network Security Malicious Software

Department of Electronics & Communication Engineering, Canara Engineering College Page 6

Figure 19.2. Logic for a Compression Virus

Figure 19.3. A Compression Virus

Types of Viruses

There has been a continuous arms race between virus writers and writers of antivirus software

since viruses first appeared. As effective countermeasures have been developed for existing

types of viruses, new types have been developed. suggests the following categories as being

among the most significant types of viruses:

Network Security Malicious Software

Department of Electronics & Communication Engineering, Canara Engineering College Page 7

Parasitic virus: The traditional and still most common form of virus. A parasitic virus

attaches itself to executable files and replicates, when the infected program is executed, by

finding other executable files to infect.

Memory-resident virus: Lodges in main memory as part of a resident system program.

From that point on, the virus infects every program that executes.

Boot sector virus: Infects a master boot record or boot record and spreads when a system is

booted from the disk containing the virus.

Stealth virus: A form of virus explicitly designed to hide itself from detection by antivirus

software.

Polymorphic virus: A virus that mutates with every infection, making detection by the

"signature" of the virus impossible.

Metamorphic virus: As with a polymorphic virus, a metamorphic virus mutates with every

infection. The difference is that a metamorphic virus rewrites itself completely at each

iteration, increasing the difficulty of detection. Metamorphic viruses my change their

behavior as well as their appearance.

One example of a stealth virus was discussed earlier: a virus that uses compression so that

the infected program is exactly the same length as an uninfected version. Far more

sophisticated techniques are possible. For example, a virus can place intercept logic in disk

I/O routines, so that when there is an attempt to read suspected portions of the disk using

these routines, the virus will present back the original, uninfected program. Thus, stealth is

not a term that applies to a virus as such but, rather, is a technique used by a virus to evade

detection.

A polymorphic virus creates copies during replication that are functionally equivalent but

have distinctly different bit patterns. As with astealth virus, the purpose is to defeat programs

that scan for viruses. In this case, the "signature" of the virus will vary with each copy. To

achieve this variation, the virus may randomly insert superfluous instructions or interchange

the order of independent instructions. A more effective approach is to use encryption. A

portion of the virus, generally called a mutation engine, creates a random encryption key to

encrypt the remainder of the virus. The key is stored with the virus, and the mutation engine

itself is altered. When an infected program is invoked, the virus uses the stored random key to

decrypt the virus. When the virus replicates, a different random key is selected.

Macro Viruses

Network Security Malicious Software

Department of Electronics & Communication Engineering, Canara Engineering College Page 8

In the mid-1990s, macro viruses became by far the most prevalent type of virus. Macro

viruses are particularly threatening for a number of reasons:

1. A macro virus is platform independent. Virtually all of the macro viruses infect Microsoft

Word documents. Any hardware platform and operating system that supports Word can be

infected.

2. Macro viruses infect documents, not executable portions of code. Most of the information

introduced onto a computer system isin the form of a document rather than a program.

3. Macro viruses are easily spread. A very common method is by electronic mail.

Macro viruses take advantage of a feature found in Word and other office applications such

as Microsoft Excel, namely the macro. In essence, a macro is an executable program

embedded in a word processing document or other type of file. Typically, users employ

macros to automate repetitive tasks and thereby save keystrokes. The macro language is

usually some form of the Basic programming language. A user might define a sequence of

keystrokes in a macro and set it up so that the macro is invoked when a function key or

special short combination of keys is input.

Successive releases of Word provide increased protection against macro viruses. For

example, Microsoft offers an optional Macro Virus Protection tool that detects suspicious

Word files and alerts the customer to the potential risk of opening a file with macros. Various

antivirus product vendors have also developed tools to detect and correct macro viruses. As

in other types of viruses, the arms race continues in the field of macro viruses, but they no

longer are the predominant virus threat.

E-mail Viruses

A more recent development in malicious software is the e-mail virus. The first rapidly

spreading e-mail viruses, such as Melissa, made use of a Microsoft Word macro embedded in

an attachment. If the recipient opens the e-mail attachment, the Word macro is activated.

Then

1. The e-mail virus sends itself to everyone on the mailing list in the user's e-mail package.

2. The virus does local damage.

At the end of 1999, a more powerful version of the e-mail virus appeared. This newer version

can be activated merely by opening an e-mail that contains the virus rather than opening an

Network Security Malicious Software

Department of Electronics & Communication Engineering, Canara Engineering College Page 9

attachment. The virus uses the Visual Basic scripting language supported by the e-mail

package.

Thus we see a new generation of malware that arrives via e-mail and uses e-mail software

features to replicate itself across the Internet.

The virus propagates itself as soon as activated (either by opening an e-mail attachment of by

opening the e-mail) to all of the e-mail addresses known to the infected host. As a result,

whereas viruses used to take months or years to propagate, they now do so in hours.

This makes it very difficult for antivirus software to respond before much damage is done.

Ultimately, a greater degree of security must be built into Internet utility and application

software on PCs to counter the growing threat.

Worms

A worm is a program that can replicate itself and send copies from computer to computer

across network connections. Upon arrival, the worm may be activated to replicate and

propagate again. In addition to propagation, the worm usually performs some unwanted

function.

An e-mail virus has some of the characteristics of a worm, because it propagates itself from

system to system. However, we can still classify it as a virus because it requires a human to

move it forward. A worm actively seeks out more machines to infect and each machine that is

infected serves as an automated launching pad for attacks on other machines.

Network worm programs use network connections to spread from system to system. Once

active within a system, a network worm can behave as a computer virus or bacteria, or it

could implant Trojan horse programs or perform any number of disruptive or destructive

actions.

To replicate itself, a network worm uses some sort of network vehicle. Examples include the

following:

Electronic mail facility: A worm mails a copy of itself to other systems.

Remote execution capability: A worm executes a copy of itself on another system.

Remote login capability: A worm logs onto a remote system as a user and then uses

commands to copy itself from one system to the other.

The new copy of the worm program is then run on the remote system where, in addition to

any functions that it performs at that system, it continues to spread in the same fashion.

Network Security Malicious Software

Department of Electronics & Communication Engineering, Canara Engineering College Page 10

A network worm exhibits the same characteristics as a computer virus: a dormant phase, a

propagation phase, a triggering phase, and an execution phase. The propagation phase

generally performs the following functions:

1. Search for other systems to infect by examining host tables or similar repositories of

remote system addresses.

2. Establish a connection with a remote system.

3. Copy itself to the remote system and cause the copy to be run.

The network worm may also attempt to determine whether a system has previously been

infected before copying itself to the system. In a multiprogramming system, it may also

disguise its presence by naming itself as a system process or using some other name that may

not be noticed by a system operator. As with viruses, network worms are difficult to counter.

The Morris Worm

Until the current generation of worms, the best known was the worm released onto the

Internet by Robert Morris in 1998. The Morris worm was designed to spread on UNIX

systems and used a number of different techniques for propagation. When a copy began

execution, its first task was to discover other hosts known to this host that would allow entry

from this host. The worm performed this task by examining a variety of lists and tables,

including system tables that declared which other machines were trusted by this host, users'

mail forwarding files, tables by which users gave themselves permission for access to remote

accounts, and from a program that reported the status of network connections. For each

discovered host, the worm tried a number of methods for gaining access:

1. It attempted to log on to a remote host as a legitimate user. In this method, the worm first

attempted to crack the local password file, and then used the discovered passwords and

corresponding user IDs. The assumption was that many users would use the same password

on different systems. To obtain the passwords, the worm ran a password-cracking program

that tried

a. Each user's account name and simple permutations of it

b. A list of 432 built-in passwords that Morris thought to be likely candidates

c. All the words in the local system directory

2. It exploited a bug in the finger protocol, which reports the whereabouts of a remote user.

Network Security Malicious Software

Department of Electronics & Communication Engineering, Canara Engineering College Page 11

3. It exploited a trapdoor in the debug option of the remote process that receives and sends

mail.

If any of these attacks succeeded, the worm achieved communication with the operating

system command interpreter. It then sent this interpreter a short bootstrap program, issued a

command to execute that program, and then logged off. The bootstrap program then called

back the parent program and downloaded the remainder of the worm. The new worm was

then executed.

Recent Worm Attacks

The contemporary era of worm threats began with the release of the Code Red worm in July

of 2001. Code Red exploits a security hole in the Microsoft Internet Information Server (IIS)

to penetrate and spread. It also disables the system file checker in Windows. The worm

probes random IP addresses to spread to other hosts. During a certain period of time, it only

spreads. It then initiates a denial-of-service attack against a government Web site by flooding

the site with packets from numerous hosts. The worm then suspends activities and reactivates

periodically. In the second wave of attack, Code Red infected nearly 360,000 servers in 14

hours. In addition to the havoc it causes at the targeted server, Code Red can consume

enormous amounts of Internet capacity, disrupting service.

Code Red II is a variant that targets Microsoft IISs. In addition, this newer worm installs a

backdoor allowing a hacker to direct activities of victim computers.

In late 2001, a more versatile worm appeared, known as Nimda. Nimda spreads by multiple

mechanisms:

 from client to client via e-mail

 from client to client via open network shares

 from Web server to client via browsing of compromised Web sites

 from client to Web server via active scanning for and exploitation of various

Microsoft IIS 4.0 / 5.0 directory traversal vulnerabilities

 from client to Web server via scanning for the back doors left behind by the "Code

Red II" worms

The worm modifies Web documents (e.g., .htm, .html, and .asp files) and certain executable

files found on the systems it infects and creates numerous copies of itself under various

filenames.

Network Security Malicious Software

Department of Electronics & Communication Engineering, Canara Engineering College Page 12

Virus Countermeasures

Antivirus Approaches

The ideal solution to the threat of viruses is prevention: Do not allow a virus to get into the

system in the first place. This goal is, ingeneral, impossible to achieve, although prevention

can reduce the number of successful viral attacks. The next best approach is to be able to do

the following:

Detection: Once the infection has occurred, determine that it has occurred and locate the

virus.

Identification: Once detection has been achieved, identify the specific virus that has infected

a program.

Removal: Once the specific virus has been identified, remove all traces of the virus from the

infected program and restore it to its original state. Remove the virus from all infected

systems so that the disease cannot spread further.

If detection succeeds but either identification or removal is not possible, then the alternative

is to discard the infected program and reload a clean backup version.

Advances in virus and antivirus technology go hand in hand. Early viruses were relatively

simple code fragments and could be identified and purged with relatively simple antivirus

software packages. As the virus arms race has evolved, both viruses and, necessarily,

antivirus software have grown more complex and sophisticated.

[STEP93] identifies four generations of antivirus software:

First generation: simple scanners

Second generation: heuristic scanners

Third generation: activity traps

Fourth generation: full-featured protection

A first-generation scanner requires a virus signature to identify a virus. The virus may

contain "wildcards" but has essentially the same structure and bit pattern in all copies. Such

signature-specific scanners are limited to the detection of known viruses. Another type of

first-generation scanner maintains a record of the length of programs and looks for changes in

length.

A second-generation scanner does not rely on a specific signature. Rather, the scanner uses

heuristic rules to search for probable virus infection. One class of such scanners looks for

fragments of code that are often associated with viruses. For example, a scanner may look for

the beginning of an encryption loop used in a polymorphic virus and discover the encryption

Network Security Malicious Software

Department of Electronics & Communication Engineering, Canara Engineering College Page 13

key. Once the key is discovered, the scanner can decrypt the virus to identify it, then remove

the infection and return the program to service.

Another second-generation approach is integrity checking. A checksum can be appended to

each program. If a virus infects the program without changing the checksum, then an integrity

check will catch the change. To counter a virus that is sophisticated enough to change the

checksum when it infects a program, an encrypted hash function can be used. The encryption

key is stored separately from the program so that the virus cannot generate a new hash code

and encrypt that. By using a hash function rather than a simpler checksum, the virus is

prevented from adjusting the program to produce the same hash code as before.

Third-generation programs are memory-resident programs that identify a virus by its actions

rather than its structure in an infected program. Such programs have the advantage that it is

not necessary to develop signatures and heuristics for a wide array of viruses.

Rather, it is necessary only to identify the small set of actions that indicate an infection is

being attempted and then to intervene.

Fourth-generation products are packages consisting of a variety of antivirus techniques used

in conjunction. These include scanning and activity trap components. In addition, such a

package includes access control capability, which limits the ability of viruses to penetrate a

system and then limits the ability of a virus to update files in order to pass on the infection.

Advanced Antivirus Techniques

More sophisticated antivirus approaches and products continue to appear. In this subsection,

we highlight two of the most important.

Generic Decryption

Generic decryption (GD) technology enables the antivirus program to easily detect even the

most complex polymorphic viruses, while maintaining fast scanning speeds [NACH97].

Recall that when a file containing a polymorphic virus is executed, the virus must decrypt

itself to activate. In order to detect such a structure, executable files are run through a GD

scanner, which contains the following elements:

CPU emulator: A software-based virtual computer. Instructions in an executable file are

interpreted by the emulator rather than

executed on the underlying processor. The emulator includes software versions of all

registers and other processor hardware,

so that the underlying processor is unaffected by programs interpreted on the emulator.

Network Security Malicious Software

Department of Electronics & Communication Engineering, Canara Engineering College Page 14

Virus signature scanner: A module that scans the target code looking for known virus

signatures.

Emulation control module: Controls the execution of the target code.

At the start of each simulation, the emulator begins interpreting instructions in the target

code, one at a time. Thus, if the code includes a decryption routine that decrypts and hence

exposes the virus, that code is interpreted. In effect, the virus does the work for the antivirus

program by exposing the virus. Periodically, the control module interrupts interpretation to

scan the target code for virus signatures. During interpretation, the target code can cause no

damage to the actual personal computer environment, because it is being interpreted in a

completely controlled environment. The most difficult design issue with a GD scanner is to

determine how long to run each interpretation. Typically, virus elements are

activated soon after a program begins executing, but this need not be the case. The longer the

scanner emulates a particular program, the more likely it is to catch any hidden viruses.

However, the antivirus program can take up only a limited amount of time and resources

before users complain.

Digital Immune System

The digital immune system is a comprehensive approach to virus protection developed by

IBM . The motivation for this development has been the rising threat of Internet-based virus

propagation. We first say a few words about this threat and then summarize IBM's approach.

Traditionally, the virus threat was characterized by the relatively slow spread of new viruses

and new mutations. Antivirus software was typically updated on a monthly basis, and this has

been sufficient to control the problem. Also traditionally, the Internet played a comparatively

small role in the spread of viruses. But as points out, two major trends in Internet technology

have had an increasing impact on the rate of virus propagation in recent years:

Integrated mail systems: Systems such as Lotus Notes and Microsoft Outlook make it very

simple to send anything to anyone and to work with objects that are received.

Mobile-program systems: Capabilities such as Java and ActiveX allow programs to move

on their own from one system to another.

In response to the threat posed by these Internet-based capabilities, IBM has developed a

prototype digital immune system. This system expands on the use of program emulation

discussed in the preceding subsection and provides a general-purpose emulation and virus-

detection system. The objective of this system is to provide rapid response time so that

viruses can be stamped out almost as soon as they are introduced. When a new virus enters an

Network Security Malicious Software

Department of Electronics & Communication Engineering, Canara Engineering College Page 15

organization, the immune system automatically captures it, analyzes it, adds detection and

shielding for it, removes it, and passes information about that virus to systems running IBM

Anti Virus so that it can be detected before it is allowed to run elsewhere.

Figure 19.5 illustrates the typical steps in digital immune system operation:

1. A monitoring program on each PC uses a variety of heuristics based on system behavior,

suspicious changes to programs, or family signature to infer that a virus may be present. The

monitoring program forwards a copy of any program thought to be infected to an

administrative machine within the organization.

2. The administrative machine encrypts the sample and sends it to a central virus analysis

machine.

3. This machine creates an environment in which the infected program can be safely run for

analysis. Techniques used for this purpose include emulation, or the creation of a protected

environment within which the suspect program can be executed and monitored. The virus

analysis machine then produces a prescription for identifying and removing the virus.

4. The resulting prescription is sent back to the administrative machine.

5. The administrative machine forwards the prescription to the infected client.

6. The prescription is also forwarded to other clients in the organization.

7. Subscribers around the world receive regular antivirus updates that protect them from the

new virus.

Network Security Malicious Software

Department of Electronics & Communication Engineering, Canara Engineering College Page 16

Figure 19.4 digital immune system

The success of the digital immune system depends on the ability of the virus analysis

machine to detect new and innovative virus strains.

By constantly analyzing and monitoring the viruses found in the wild, it should be possible to

continually update the digital immune software to keep up with the threat.

Behavior-Blocking Software

Unlike heuristics or fingerprint-based scanners, behavior-blocking software integrates with

the operating system of a host computer and monitors program behavior in real-time for

malicious actions. The behavior blocking software then blocks potentially malicious actions

before they have a chance to affect the system. Monitored behaviors can include the

following:

Attempts to open, view, delete, and/or modify files;

Attempts to format disk drives and other unrecoverable disk operations;

Modifications to the logic of executable files or macros;

Modification of critical system settings, such as start-up settings;

Scripting of e-mail and instant messaging clients to send executable content; and Initiation of

network communications. If the behavior blocker detects that a program is initiating would-

be malicious behaviors as it runs, it can block these behaviors in real-time and/or terminate

the offending software. This gives it a fundamental advantage over such established antivirus

detection techniques as fingerprinting or heuristics. While there are literally trillions of

different ways to obfuscate and rearrange the instructions of a virus or worm, many of which

will evade detection by a fingerprint scanner or heuristic, eventually malicious code must

make a well-defined request to the operating system. Given that the behavior blocker can

intercept all such requests, it can identify and block malicious actions regardless

of how obfuscated the program logic appears to be. The ability to watch software as it runs in

real time clearly confers a huge benefit to the behavior blocker; however, it also has

drawbacks.

Since the malicious code must actually run on the target machine before all its behaviors can

be identified, it can cause a great deal of harm to the system before it has been detected and

blocked by the behavior blocking system. For instance, a new virus might shuffle a number

of seemingly unimportant files around the hard drive before infecting a single file and being

Network Security Malicious Software

Department of Electronics & Communication Engineering, Canara Engineering College Page 17

blocked. Even though the actual infection was blocked, the user may be unable to locate their

files, causing a loss to productivity or possibly worse.

