Chapter 5

Web Security

Virtually all businesses, most government agencies, and many individuals now have Web sites. The number of individuals and companies with Internet access is expanding rapidly and all of these have graphical Web browsers. As a result, businesses are enthusiastic about setting up facilities on the Web for electronic commerce. But the reality is that the Internet and the Web are extremely vulnerable to compromises of various sorts. As businesses wake up to this reality, the demand for secure Web services grows.

Web Security Considerations

- The World Wide Web is fundamentally a client/server application running over the Internet and TCP/IP intranets. As such, the security tools and approaches discussed so far in this book are relevant to the issue of Web security. But, as pointed out in [GARF97], the Web presents new challenges not generally appreciated in the context of computer and network security:
- The Internet is two way. Unlike traditional publishing environments, even electronic publishing systems involving teletext, voice response, or fax-back, the Web is vulnerable to attacks on the Web servers over the Internet.
- The Web is increasingly serving as a highly visible outlet for corporate and product information and as the platform for business transactions. Reputations can be damaged and money can be lost if the Web servers are subverted.
- Although Web browsers are very easy to use, Web servers are relatively easy to configure and manage, and Web content is increasingly easy to develop, the underlying software is extraordinarily complex. This complex software may hide many potential security flaws. The short history of the Web is filled with examples of new and upgraded systems, properly installed, that are vulnerable to a variety of security attacks.
- A Web server can be exploited as a launching pad into the corporation's or agency's entire computer complex. Once the Web server is subverted, an attacker may be able

to gain access to data and systems not part of the Web itself but connected to the server at the local site.

• Casual and untrained (in security matters) users are common clients for Web-based services. Such users are not necessarily aware of the security risks that exist and do not have the tools or knowledge to take effective countermeasures.

Web Security Threats

Table 17.1 provides a summary of the types of security threats faced in using the Web. One way to group these threats is in terms of passive and active attacks. Passive attacks include eavesdropping on network traffic between browser and server and gaining access to information on a Web site that is supposed to be restricted. Active attacks include impersonating another user, altering messages in transit between client and server, and altering information on a Web site.

(This Item is displayed on page 630 in the print version)				
	Threats	Consequences	Countermeasures	
Integrity	 Modification of user data Trojan home browser Modification of memory Modification of message traffic in transit 	 Loss of information Compromise of machine Vulnerability to all other threats 	Cryptographic checksums	
Confidentiality	 Eavesdropping on the Net Theft of info from server Theft of data from client Info about network configuration Info about which client talks to server 	 Loss of information Loss of privacy 	Encryption, web proxies	
Denial of Service	 Killing of user threads Flooding machine with bogus requests Filling up disk or memory Isolating machine by DNS attacks 	 Disruptive Annoying Prevent user from getting work done 	Difficult to prevent	
Authentication	 Impersonation of legitimate users Data forgery 	 Misrepresentation of user Belief that faise information is valid 	Cryptographic techniques	

Table 17.1. A Comparison of Threats on the Web [RUBI97]

(This Item is displayed on page 530 in the print version)

Another way to classify Web security threats is in terms of the location of the threat: Web server, Web browser, and network traffic between browser and server. Issues of server and browser security fall into the category of computer system security; Part Four of this book addresses the issue of system security in general but is also applicable to Web system security. Issues of traffic security fall into the category of network security

Secure Socket Layer and Transport Layer Security

Netscape originated SSL. Version 3 of the protocol was designed with public review and input from industry and was published as an Internet draft document. Subsequently, when a consensus was reached to submit the protocol for Internet standardization, the TLS working group was formed within IETF to develop a common standard. This first published version of TLS can be viewed as essentially an

SSLv3.1 and is very close to and backward compatible with SSLv3.

The bulk of this section is devoted to a discussion of SSLv3. At the end of the section, the principal differences between SSLv3 and TLS are described.

SSL Architecture

SSL is designed to make use of TCP to provide a reliable end-to-end secure service. SSL is not a single protocol but rather two layers of protocols, as illustrated in Figure 17.2.

SSL Handshake Protocol	SSL Change Cipher Spec Protocol	SSL Alert Protocol	HTTP
	SSL Recor	d Protocol	
	тс	CP	
	П	P	

Figure 17.2. SSL Protocol Stack

The SSL Record Protocol provides basic security services to various higher-layer protocols. In particular, the Hypertext Transfer Protocol (HTTP), which provides the transfer service for Web client/server interaction, can operate on top of SSL. Three higher-layer protocols are defined as part of SSL: the Handshake Protocol, The Change Cipher Spec Protocol, and the Alert Protocol. These SSL-specific protocols are used in the management of SSL exchanges

Two important SSL concepts are the SSL session and the SSL connection, which are defined in the specification as follows:

Connection: A connection is a transport (in the OSI layering model definition) that provides a suitable type of service. For SSL, such connections are peer-to-peer relationships. The connections are transient. Every connection is associated with one session.

Session: An SSL session is an association between a client and a server. Sessions are created by the Handshake Protocol.

Sessions define a set of cryptographic security parameters, which can be shared among multiple connections. Sessions are used to avoid the expensive negotiation of new security parameters for each connection.

Between any pair of parties (applications such as HTTP on client and server), there may be multiple secure connections. In theory, there may also be multiple simultaneous sessions between parties, but this feature is not used in practice.

There are actually a number of states associated with each session. Once a session is established, there is a current operating state for both read and write (i.e., receive and send). In addition, during the Handshake Protocol, pending read and write states are created. Upon successful conclusion of the Handshake Protocol, the pending states become the current states.

A session state is defined by the following parameters (definitions taken from the SSL specification):

Session identifier: An arbitrary byte sequence chosen by the server to identify an active or resumable session state.

Peer certificate: An X509.v3 certificate of the peer. This element of the state may be null. **Compression method:** The algorithm used to compress data prior to encryption.

Cipher spec: Specifies the bulk data encryption algorithm (such as null, AES, etc.) and a hash algorithm

Master secret: 48-byte secret shared between the client and server.

Is resumable: A flag indicating whether the session can be used to initiate new connections. A connection state is defined by the following parameters:

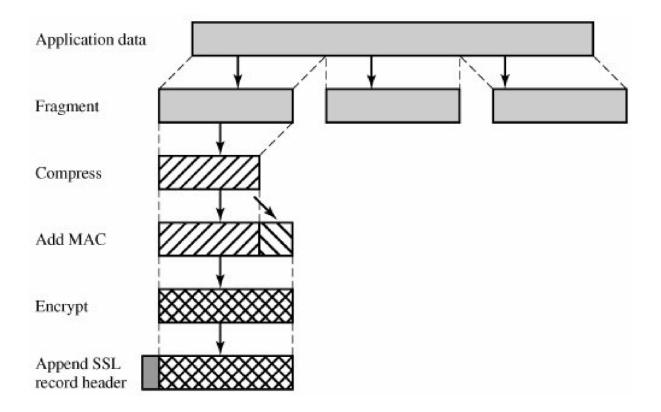
Server and client random: Byte sequences that are chosen by the server and client for each connection.

Server write MAC secret: The secret key used in MAC operations on data sent by the server.

Client write MAC secret: The secret key used in MAC operations on data sent by the client. **Server write key:** The conventional encryption key for data encrypted by the server and decrypted by the client. **Client write key:** The conventional encryption key for data encrypted by the client and decrypted by the server.

Initialization vectors: When a block cipher in CBC mode is used, an initialization vector (IV) is maintained for each key. This field is first initialized by the SSL Handshake Protocol. Thereafter the final ciphertext block from each record is preserved for use as the IV with the following record.

Sequence numbers: Each party maintains separate sequence numbers for transmitted and received messages for each connection. When a party sends or receives a change cipher spec message,


SSL Record Protocol

The SSL Record Protocol provides two services for SSL connections:

Confidentiality: The Handshake Protocol defines a shared secret key that is used for conventional encryption of SSL payloads.

Message Integrity: The Handshake Protocol also defines a shared secret key that is used to form a message authentication code (MAC).

Figure 17.3 indicates the overall operation of the SSL Record Protocol. The Record Protocol takes an application message to be transmitted, fragments the data into manageable blocks, optionally compresses the data, applies a MAC, encrypts, adds a header, and transmits the resulting unit in a TCP segment. Received data are decrypted, verified, decompressed, and reassembled and then delivered to higher-level users.

The first step is **fragmentation**. Each upper-layer message is fragmented into blocks of 214 bytes (16384 bytes) or less. Next, **compression** is optionally applied. Compression must be lossless and may not increase the content length by more than 1024 bytes.[2] In SSLv3 (as well as the current version of TLS), no compression algorithm is specified, so the default compression algorithm is null.