
Chapter 4 

Digital Signatures 

Requirements 

Message authentication protects two parties who exchange messages from any third party. 

However, it does not protect the two parties against each other. Several forms of dispute 

between the two are possible. 

 

For example, suppose that John sends an authenticated message to Mary, using one of the 

schemes oFf igure 11.4. Consider the following disputes that could arise: 

1. Mary may forge a different message and claim that it came from John. Mary would simply 

have to create a message and append an authentication code using the key that John and Mary 

share. 

2. John can deny sending the message. Because it is possible for Mary to forge a message, 

there is no way to prove that John did in fact send the message. 

3.Both scenarios are of legitimate concern. Here is an example of the first scenario: An 

electronic funds transfer takes place, and the receiver increases the amount of funds 

transferred and claims that the larger amount had arrived from the sender. An example of the 

second scenario is that an electronic mail message contains instructions to a stockbroker for a 

transaction that subsequently turns out badly. The sender pretends that the message was never 

sent. 

In situations where there is not complete trust between sender and receiver, something more 

than authentication is needed. The most attractive solution to this problem is the digital 

signature. The digital signature is analogous to the handwritten signature. It must have the 

following properties: 

It must verify the author and the date and time of the signature. 

It must to authenticate the contents at the time of the signature. 

It must be verifiable by third parties, to resolve disputes. 

Thus, the digital signature function includes the authentication function. 

On the basis of these properties, we can formulate the following requirements for a digital 

signature: 

The signature must be a bit pattern that depends on the message being signed. 

The signature must use some information unique to the sender, to prevent both forgery and 

denial. 



It must be relatively easy to produce the digital signature. 

It must be relatively easy to recognize and verify the digital signature. 

It must be computationally infeasible to forge a digital signature, either by constructing a new 

message for an existing digital signature or by constructing a fraudulent digital signature for a 

given message. 

It must be practical to retain a copy of the digital signature in storage. 

 

Direct Digital Signature 

The direct digital signature involves only the communicating parties (source, destination). It 

is assumed that the destination knows the public key of the source. A digital signature may be 

formed by encrypting the entire message with the sender's private key (Figure 

11.1c) or by encrypting a hash code of the message with the sender's private keyF (igure 

11.5c). 

 

Confidentiality can be provided by further encrypting the entire message plus signature with 

either the receiver's public key (public-key encryption) or a shared secret key (symmetric 

encryption); for example, see Figures 11.1d and 11.5d. Note that it is important to perform 

the signature function first and then an outer confidentiality function. In case of dispute, some 

third party must view the message and its signature. If the signature is calculated on an 

encrypted message, then the third party also needs access to the decryption key to read the 

original message. However, if the signature is the inner operation, then the recipient can store 

the plaintext message and its signature for later use in dispute resolution. 

All direct schemes described so far share a common weakness. The validity of the scheme 

depends on the security of the sender's private key. If a sender later wishes to deny sending a 

particular message, the sender can claim that the private key was lost or stolen and that 

someone else forged his or her signature. Administrative controls relating to the security of 

private keys can be employed to thwart or at least weaken this ploy, but the threat is still 

there, at least to some degree. One example is to require every signed message to include a 

timestamp (date and time) and to require prompt reporting of compromised keys to a central 

authority. 

 



 

Arbitrated Digital Signature 

The problems associated with direct digital signatures can be addressed by using an arbiter. 

As with direct signature schemes, there is a variety of arbitrated signature schemes. In general 

terms, they all operate as follows. Every signed message from a sender X to a receiver Y goes 

first to an arbiter A, who subjects the message and its signature to a number of tests to check 

its origin and content. The message is then dated and sent to Y with an indication that it has 

been verified to the satisfaction of the arbiter. The presence of A solves the problem faced by 

direct signature schemes: that X might disown the message. 

The arbiter plays a sensitive and crucial role in this sort of scheme, and all parties must have 

a great deal of trust that the arbitration mechanism is working properly. The use of a trusted 

system, might satisfy this requirement. 

 

 

Authentication Protocols 

The basic tools described are used in a variety of applications, including the digital signature  

 

Other uses are numerous and growing. In this section, we focus on two general areas (mutual 

authentication and one-way authentication) and examine some of the implications of 

authentication techniques in both. 

Mutual Authentication 

An important application area is that of mutual authentication protocols. Such protocols 

enable communicating parties to satisfy themselves mutually about each other's identity and 

to exchange session keys.  

There, the focus was key distribution. We return to this topic here to consider the wider 

implications of authentication. 

Central to the problem of authenticated key exchange are two issues: confidentiality and 

timeliness. To prevent masquerade and to prevent compromise of session keys, essential 

identification and session key information must be communicated in encrypted form. This 

requires the prior existence of secret or public keys that can be used for this purpose. The 

second issue, timeliness, is important because of the threat of message replays. Such replays, 

at worst, could allow an opponent to compromise a session key or successfully impersonate 



another party. At minimum, a successful replay can disrupt operations by presenting parties 

with messages that appear genuine but are not. 

 

[GONG93] lists the following examples of replay attacks: 

Simple replay: The opponent simply copies a message and replays it later. 

Repetition that can be logged: An opponent can replay a time stamped message within the 

valid time window. 

Repetition that cannot be detected: This situation could arise because the original message 

could have been suppressed and thus did not arrive at its destination; only the replay message 

arrives. 

Backward replay without modification: This is a replay back to the message sender. This 

attack is possible if symmetric encryption is used and the sender cannot easily recognize the 

difference between messages sent and messages received on the basis of content. 

One approach to coping with replay attacks is to attach a sequence number to each message 

used in an authentication exchange. A new message is accepted only if its sequence number 

is in the proper order. The difficulty with this approach is that it requires each party to keep 

track of the last sequence number for each claimant it has dealt with. Because of this 

overhead, sequence numbers are generally not used for authentication and key exchange. 

Instead, one of the following two general approaches is used: 

Timestamps: Party A accepts a message as fresh only if the message contains a timestamp 

that, in A's judgment, is close enough to A's knowledge of current time. This approach 

requires that clocks among the various participants be synchronized. 

Challenge/response: Party A, expecting a fresh message from B, first sends B a nonce 

(challenge) and requires that the subsequent message (response) received from B contain the 

correct nonce value. 

It can be argued (e.g., [LAM92a]) that the timestamp approach should not be used for 

connection-oriented applications because of the inherent difficulties with this technique. First, 

some sort of protocol is needed to maintain synchronization among the various processor 

clocks. This protocol must be both fault tolerant, to cope with network errors, and secure, to 

cope with hostile attacks. Second, the opportunity for a successful attack will arise if there is 

a temporary loss of synchronization resulting from a fault in the clock mechanism of one of 

the parties. Finally, because of the variable and unpredictable nature of network delays, 

distributed clocks cannot be expected to maintain precise synchronization. Therefore, any 



timestamp-based procedure must allow for a window of time sufficiently large to 

accommodate network delays yet sufficiently small to minimize the opportunity for attack. 

On the other hand, the challenge-response approach is unsuitable for a connectionless type of 

application because it requires the overhead of a handshake before any connectionless 

transmission, effectively negating the chief characteristic of a connectionless transaction. For 

such applications, reliance on some sort of secure time server and a consistent attempt by 

each party to keep its clocks in synchronization may be the best approach  

 

Symmetric Encryption Approaches 

 

 a two-level hierarchy of symmetric encryption keys can be used to provide confidentiality 

for communication in a distributed environment. In general, this strategy involves the use of a 

trusted key distribution center (KDC). Each party in the network shares a secret key, known 

as a master key, with the KDC. The KDC is responsible for generating keys to be used for a 

short time over a connection between two parties, known as session keys, and for distributing 

those keys using the master keys to protect the distribution. This approach is quite common.  

 

One-Way Authentication 

One application for which encryption is growing in popularity is electronic mail (e-mail). The 

very nature of electronic mail, and its chief benefit, is that it is not necessary for the sender 

and receiver to be online at the same time. Instead, the e-mail message is forwarded to the 

receiver's electronic mailbox, where it is buffered until the receiver is available to read it. 

The "envelope" or header of the e-mail message must be in the clear, so that the message can 

be handled by the store-and-forward e-mail protocol, such as the Simple Mail Transfer 

Protocol (SMTP) or X.400. However, it is often desirable that the mail-handling protocol not 

require access to the plaintext form of the message, because that would require trusting the 

mail-handling mechanism. Accordingly, the e-mail message should be encrypted such that 

the mail-handling system is not in possession of the decryption key. 

A second requirement is that of authentication. Typically, the recipient wants some assurance 

that the message is from the alleged sender. 

 

 



Digital Signature Standard 

The National Institute of Standards and Technology (NIST) has published Federal 

Information Processing Standard FIPS 186, known as the Digital Signature Standard (DSS). 

The DSS makes use of the Secure Hash Algorithm (SHA) presents a new digital signature 

technique, the Digital Signature Algorithm (DSA). The DSS was originally proposed in 1991 

and revised in 1993 in response to public feedback concerning the security of the scheme. 

There was a further minor revision in 1996. In 2000, an expanded version of the standard was 

issued as FIPS 186-2. This latest version also incorporates digital signature algorithms based 

on RSA and on elliptic curve cryptography. In this section, we discuss the original DSS 

algorithm. 

 

The DSS Approach 

The DSS uses an algorithm that is designed to provide only the digital signature function. 

Unlike RSA, it cannot be used for encryption or key exchange. Nevertheless, it is a public-

key technique. 

Figure 13.1 contrasts the DSS approach for generating digital signatures to that used with 

RSA. In the RSA approach, the message to be signed is input to a hash function that produces 

a secure hash code of fixed length. This hash code is then encrypted using the sender's private 

key to form the signature. Both the message and the signature are then transmitted. The 

recipient takes the message and produces a hash code. The recipient also decrypts the 

signature using the sender's public key. If the calculated hash code matches the decrypted 

signature, the signature is accepted as valid. Because only the sender knows the private key, 

only the sender could have produced a valid signature. 

Figure 13.1. Two Approaches to Digital Signatures 

 

 



 

The DSS approach also makes use of a hash function. The hash code is provided as input to a 

signature function along with a random number k generated for this particular signature. The 

signature function also depends on the sender's private key (PRa)and a set of parameters 

known to a group of communicating principals. We can consider this set to constitute a global 

public key (PUG). 

The result is a signature consisting of two components, labeled s and r. 

At the receiving end, the hash code of the incoming message is generated. This plus the 

signature is input to a verification function. The verification function also depends on the 

global public key as well as the sender's public key (PUa), which is paired with the sender's 

private key. The output of the verification function is a value that is equal to the signature 

component r if the signature is valid. The signature function is such that only the sender, with 

knowledge of the private key, could have produced the valid signature 

 
 
 

 


