
Chapter 3 

Principles of Public-Key Cryptosystems 

The concept of public-key cryptography evolved from an attempt to attack two of the most 

difficult problems associated with symmetric encryption. key distribution under symmetric 

encryption requires either (1) that two communicants already share a key, which somehow 

has been distributed to them; or (2) the use of a key distribution center. Whitfield Diffie, one 

of the discoverers of public-key encryption (along with Martin Hellman, both at Stanford 

University at the time), reasoned that this second requirement negated the very essence of 

cryptography: the ability to maintain total secrecy over your own communication. 

 

The second problem that Diffie pondered, and one that was apparently unrelated to the first 

was that of "digital signatures." If the use of cryptography was to become widespread, not 

just in military situations but for commercial and private purposes, then electronic messages 

and documents would need the equivalent of signatures used in paper documents. 

 

Public-Key Cryptosystems 

Asymmetric algorithms rely on one key for encryption and a different but related key for 

decryption. These algorithms have the following important characteristic: 

It is computationally infeasible to determine the decryption key given only knowledge of the 

cryptographic algorithm and the encryption key. 

In addition, some algorithms, such as RSA, also exhibit the following characteristic: 

Either of the two related keys can be used for encryption, with the other used for decryption. 

 

A public-key encryption scheme has six ingredients  

Plaintext: This is the readable message or data that is fed into the algorithm as input. 

Encryption algorithm: The encryption algorithm performs various transformations on the 

plaintext. 

Public and private keys: This is a pair of keys that have been selected so that if one is used 

for encryption, the other is used for decryption. The exact transformations performed by the 

algorithm depend on the public or private key that is provided as input. 

Ciphertext: This is the scrambled message produced as output. It depends on the plaintext 

and the key. For a given message, two different keys will produce two different ciphertexts. 

Decryption algorithm: This algorithm accepts the ciphertext and the matching key and 

produces the original plaintext. 



 

The essential steps are the following: 

1. Each user generates a pair of keys to be used for the encryption and decryption of 

messages. 

2. Each user places one of the two keys in a public register or other accessible file. This is the 

public key. The companion key is kept private. As Figure 9.1a suggests, each user maintains 

a collection of public keys obtained from others. 



3. If Bob wishes to send a confidential message to Alice, Bob encrypts the message using 

Alice's public key. 

4. When Alice receives the message, she decrypts it using her private key. No other recipient 

can decrypt the message because only Alice knows Alice's private key. 

With this approach, all participants have access to public keys, and private keys are generated 

locally by each participant and therefore need never be distributed. As long as a user's private 

key remains protected and secret, incoming communication is secure. At any time, a system 

can change its private key and publish the companion public key to replace its old public key. 

Table 9.1 summarizes some of the important aspects of symmetric and public-key encryption. 

To discriminate between the two, we refer to the key used in symmetric encryption as a 

secret key. The two keys used for asymmetric encryption are referred to as the public key 

and the private key. 

[2] Invariably, the private key is kept secret, but it is referred to as a private key rather than a 

secret key to avoid confusion with symmetric encryption 

 

Table 9.1. Conventional and Public-Key Encryption 

 

Conventional Encryption Public-Key Encryption 

 

Needed to Work:  

The same algorithm with the same key is 

used for encryption and decryption. 

 

The sender and receiver must share the 

algorithm and the key. 

 

 

 

Needed for Security: Needed 

 

The key must be kept secret. 

 

It must be impossible or at least impractical 

to decipher a message if no other information 

is available. 

 

Knowledge of the algorithm plus samples of 

ciphertext must be insufficient to determine 

the key. 

 

 

Needed to Work: 

One algorithm is used for encryption and 

decryption with a pair of keys, one for 

encryption and one for decryption. 

 

The sender and receiver must each have one 

of the matched pair of keys (not the same 

one). 

 

Needed for Security: Needed 

 

One of the two keys must be kept secret. 

 

It must be impossible or at least impractical 

to decipher a message if no other information 

is available. 

 

Knowledge of the algorithm plus one of the 

keys plus samples of ciphertext must be 

insufficient to determine the other key. 

 
 



Let us take a closer look at the essential elements of a public-key encryption scheme, using 

Figure 9.2 (compare with Figure 2.2). There is some source A that produces a message in 

plaintext, X =[X1, X2,..., XM,]. The M elements of X are letters in some finite alphabet. The 

message is intended for destination B. B generates a related pair of keys: a public key, PUb, 

and a private key, PUb. PUb is known only to B, whereas PUb is publicly available and 

therefore accessible by A. 

 

 

With the message X and the encryption key PUb as input, A forms the ciphertext Y = [Y1, 

Y2,..., YN]: 

Y = E(PUb, X) 

The intended receiver, in possession of the matching private key, is able to invert the 

transformation: 

X = D(PRb, Y) 

An adversary, observing Y and having access to PUb but not having access to PRb or X, must 

attempt to recover X and/or PRb. It is assumed that the adversary does have knowledge of the 

encryption (E) and decryption (D) algorithms. If the adversary is interested only in this 

particular message, then the focus of effort is to recover X, by generating a plaintext 

             



 

 

In this case, A prepares a message to B and encrypts it using A's private key before 

transmitting it. B can decrypt the message using A's public key. Because the message was 

encrypted using A's private key, only A could have prepared the message. Therefore, the 

entire encrypted message serves as a digital signature. In addition, it is impossible to alter the 

message without access to A's private key, so the message is authenticated both in terms of 

source and in terms of data integrity. 

In the preceding scheme, the entire message is encrypted, which, although validating both 

author and contents, requires a great deal of storage. Each document must be kept in plaintext 

to be used for practical purposes. A copy also must be stored in ciphertext so that the origin 

and contents can be verified in case of a dispute. A more efficient way of achieving the same 

results is to encrypt a small block of bits that is a function of the document. Such a block, 

called an authenticator, must have the property that it is infeasible to change the document 

without changing the authenticator. If the authenticator is encrypted with the sender's private 

key, it serves as a signature that verifies origin, content, and sequencingt is important to 

emphasize that the encryption process depicted in Figures 9.1b and 9.3 does not provide 

confidentiality. That is, the message being sent is safe from alteration but not from 

eavesdropping. This is obvious in the case of a signature based on a portion of the message, 

because the rest of the message is transmitted in the clear. Even in the case of complete 

encryption, as shown in Figure 9.3, there is no protection of confidentiality because any 

observer can decrypt the message by using the sender's public key. 



It is, however, possible to provide both the authentication function and confidentiality by a 

double use of the public-key scheme (Figure 9.4): 

Z = E(PUb, E(PRa, X)) 

X = D(PUa, E(PRb, Z)) 

 

 

In this case, we begin as before by encrypting a message, using the sender's private key. This 

provides the digital signature. Next, we encrypt again, using the receiver's public key. The 

final ciphertext can be decrypted only by the intended receiver, who alone has the matching 

private key. Thus, confidentiality is provided. The disadvantage of this approach is that the 

public-key algorithm, which is complex, must be exercised four times rather than two in each 

communication. 

Applications for Public-Key Cryptosystems 

Before proceeding, we need to clarify one aspect of public-key cryptosystems that is 

otherwise likely to lead to confusion. Public-key systems are characterized by the use of a 

cryptographic algorithm with two keys, one held private and one available publicly. 

Depending on the application, the sender uses either the sender's private key or the receiver's 

public key, or both, to perform some type of cryptographic function. In broad terms, we can 

classify the use of public-key cryptosystems into three categories: 

Encryption/decryption: The sender encrypts a message with the recipient's public key. 



Digital signature: The sender "signs" a message with its private key. Signing is achieved by 

a cryptographic algorithm applied to the message or to a small block of data that is a function 

of the message. 

Key exchange: Two sides cooperate to exchange a session key. Several different approaches 

are possible, involving the private key(s) of one or both parties. 

 

 

 

 The RSA Algorithm 
The pioneering paper by Diffie and Hellman [DIFF76b] introduced a new approach to 

cryptography and, in effect, challenged cryptologists to come up with a cryptographic 

algorithm that met the requirements for public-key systems. One of the first of the responses 

to the challenge was developed in 1977 by Ron Rivest, Adi Shamir, and Len Adleman at MIT 

and first published in 1978. The Rivest-Shamir-Adleman (RSA) scheme has since that time 

reigned supreme as the most widely accepted and implemented general-purpose approach to 

public-key encryption. 

The RSA scheme is a block cipher in which the plaintext and ciphertext are integers between 

0 and n 1 for somen. A typical size for n is 1024 bits, or 309 decimal digits. That is, n is less 

than 2 1024 . We examine RSA in this section in some detail, beginning with an explanation 

of the algorithm. Then we examine some of the computational and cryptanalytical 

implications of RSA. 

 

Description of the Algorithm 

The scheme developed by Rivest, Shamir, and Adleman makes use of an expression with 

exponentials. Plaintext is encrypted in blocks, with each block having a binary value less than 

some number n. That is, the block size must be less than or equal to log2(n); in practice, the 

block size is i bits, where 2
i
<n< 2

i+1
 

i+1 

. Encryption and decryption are of the following form, for some plaintext block M and 

ciphertext block C: 

C = M 
e
 mod n 



M = C 
d 

mod n = (Me)
d
mod n = M 

ed
 mod n 

Both sender and receiver must know the value of n. The sender knows the value of e, and 

only the receiver knows the value of d. Thus, this is a public-key encryption algorithm with a 

public key of PU = {e, n} and a private key of PU = {d, n}. For this algorithm to be 

satisfactory for public-key encryption, the following requirements must be met: 
 

1. It is possible to find values of e, d, n such that M 
ed 

mod n = M for all M < n.  

2. It is relatively easy to calculate mod M
e 
mod n and C 

d 
for all values of M < n. 

3. It is infeasible to determine d given e and n. 

For now, we focus on the first requirement and consider the other questions later. We need to 

find a relationship of the form 

M
ed 

mod n = M 

The preceding relationship holds if e and d are multiplicative inverses modulo f(n), where 

f(n) is the Euler totient function. It is shown that for p, q prime, f(pq) = (p 1)(q 1) The 

relationship between e and d can be expressed as 

 

 

This is equivalent to saying 

ed ≡1 mod f(n) 

d e≡1mod f(n) 

That is, e and d are multiplicative inverses mod f(n). Note that, according to the rules of 

modular arithmetic, this is true only if d (and therefore e) is relatively prime to f(n). 

Equivalently, gcd(f(n),d) = 1. 

 

We are now ready to state the RSA scheme. The ingredients are the following: 

p,q, two prime numbers      (private, chosen) 

n = pq         (public, calculated) 

e, with gcd(f(n),e) = 1;1 < e < f(n)     (public, chosen) 

d e ≡1(mod f(n))      (private, calculated) 

 

The private key consists of {d, n} and the public key consists of {e, n}. Suppose that user A 

has published its public key and that user B wishes to send the message M to A. Then B 



calculates C = M 
e
 mod n and transmits C. On receipt of this ciphertext, user A decrypts by 

calculating M = C 
d
 mod n. 

 

For this example, the keys were generated as follows: 

1. Select two prime numbers, p = 17 and q = 11. 

2. Calculate n = pq = 17 x 11 = 187. 

3. Calculate f(n) = (p 1)(q 1) = 16 x 10 = 160. 

4. Select e such that e is relatively prime to f(n) = 160 and less than f(n) we choose e = 7. 

5. Determine d such that de≡ 1 (mod 160) and d < 160. The correct value is d = 23, because 

23 x 7 = 161 = 10 x 160 + 1; d can be calculated using the extended Euclid's algorithm 

Figure 9.5. The RSA Algorithm 



 

Figure 9.6. Example of RSA Algorithm 

  



 

The resulting keys are public key PU = {7,187} and private key PR = {23,187}. The example 

shows the use of these keys for a plaintext input of M = 88. For encryption, we need to 

calculate C = 88
7
 mod 187. Exploiting the properties of modular arithmetic, we can do this as 

follows: 

 

88
7
mod 187 = [(88

4
mod 187) x (88

2
mod 187) x (88

1
mod 187)] mod 187 

88
1
mod 187 = 88 

88
2
mod 187 = 7744 mod 187 = 77 

88
4
mod 187 = 59,969,536 mod 187 = 132 

88
7
mod 187 = (88 x 77 x 132) mod 187 = 894,432 mod 187 = 11 

 

For decryption, we calculate M = 11
23

mod 187: 

11
23

mod 187 = [(11
1
mod 187) x (11

2
mod 187) x (11

4
mod 187) x (11

8
mod 187) x (11

8
mod 

187)] mod 187 

11
1
mod 187 = 11 

11
2
mod 187 = 121 

11
4
mod 187 = 14,641 mod 187 = 55 

11
8
mod 187 = 214,358,881 mod 187 = 33 

11
23

mod 187 = (11 x 121 x 55 x 33 x 33) mod 187 = 79,720,245 mod 187 = 88 

 

The Security of RSA 

Four possible approaches to attacking the RSA algorithm are as follows: 

Brute force: This involves trying all possible private keys. 

Mathematical attacks: There are several approaches, all equivalent in effort to factoring the 

product of two primes. 

Timing attacks: These depend on the running time of the decryption algorithm. 

Chosen ciphertext attacks: This type of attack exploits properties of the RSA algorithm. 

The defense against the brute-force approach is the same for RSA as for other cryptosystems, 

namely, use a large key space. Thus, the larger the number of bits in d, the better. However, 

because the calculations involved, both in key generation and in encryption/decryption, are 

complex, the larger the size of the key, the slower the system will run. 

 



Key Management 

 

One of the major roles of public-key encryption has been to address the problem of key distribution. There are actually two 

distinct aspects to the use of public-key cryptography in this regard: 
The distribution of public keys 
The use of public-key encryption to distribute secret keys 

Distribution of Public Keys 
Several techniques have been proposed for the distribution of public keys. Virtually all these proposals can be grouped into the 
following general schemes: 
Public announcement 

Publicly available directory 
Public-key authority 
Public-key certificates 

Public Announcement of Public Keys 
On the face of it, the point of public-key encryption is that the public key is public. Thus, if there is some broadly accepted 
public-key algorithm, such as RSA, any participant can send his or her public key to any other participant or broadcast the key 

to the community at large (Figure 10.1). For example, because of the growing popularity of PGP  which makes use of RSA, 
many PGP users have adopted the practice of appending their public key to messages that they send to public forums, such as 
USENET newsgroups and Internet mailing lists. 
 

 

 Although this approach is convenient, it has a major weakness. Anyone can forge 

such a public announcement. That is, some user could pretend to be user A and send a public 

key to another participant or broadcast such a public key. Until such time as user A discovers 

the forgery and alerts other participants, the forger is able to read all encrypted messages 

intended for A and can use the forged keys for authentication 

 

Publicly Available Directory 

A greater degree of security can be achieved by maintaining a publicly available dynamic 

directory of public keys. Maintenance and distribution of the public directory would have to 

be the responsibility of some trusted entity or organization (Figure 10.2). Such a scheme 

would include the following elements: 

1. The authority maintains a directory with a {name, public key} entry for each participant. 

2. Each participant registers a public key with the directory authority. Registration would 

have to be in person or by some form of secure authenticated communication. 



3. A participant may replace the existing key with a new one at any time, either because of 

the desire to replace a public key that has already been used for a large amount of data, or 

because the corresponding private key has been compromised in some way. 

4. Participants could also access the directory electronically. For this purpose, secure, 

authenticated communication from the authority to the participant is mandatory. 

 

 Figure 10.2. Public-Key Publication 

 

This scheme is clearly more secure than individual public announcements but still has 

vulnerabilities. If an adversary succeeds in obtaining or computing the private key of the 

directory authority, the adversary could authoritatively pass out counterfeit public keys and 

subsequently impersonate any participant and eavesdrop on messages sent to any participant. 

Another way to achieve the same end is for the adversary to tamper with the records kept by 

the authority. 

 

Public-Key Authority 

Stronger security for public-key distribution can be achieved by providing tighter control 

over the distribution of public keys from the directory. A typical scenario is illustrated in 

Figure 10.3, which is based on a figure in [POPE79]. As before, the scenario assumes that a 

central authority maintains a dynamic directory of public keys of all participants. In addition, 

each participant reliably knows a public key for the authority, with only the authority 

knowing the corresponding private key. The following steps (matched by number to Figure 

10.3) occur: 

1. A sends a timestamped message to the public-key authority containing a request for the 

current public key of B. 

2. The authority responds with a message that is encrypted using the authority's private key, 

PRauth Thus, A is able to decrypt the message using the authority's public key. Therefore, A 

is assured that the message originated with the authority. The message includes the following: 

B's public key, PUb which A can use to encrypt messages destined for B 



The original request, to enable A to match this response with the corresponding earlier 

request and to verify that the original request was not altered before reception by the 

authority 

The original timestamp, so A can determine that this is not an old message from the authority 

containing a key other than B's current public key 

3. A stores B's public key and also uses it to encrypt a message to B containing an identifier 

of A (IDA) and a nonce (N1), which is used to identify this transaction uniquely. 

4, 5. B retrieves A's public key from the authority in the same manner as A retrieved B's 

public key. 

At this point, public keys have been securely delivered to A and B, and they may begin their 

protected exchange. However, two additional steps are desirable: 

6. B sends a message to A encrypted with PUa and containing A's nonce (N1) as well as a 

new nonce generated by B (N2) 

Because only B could have decrypted message (3), the presence of N1 in message (6) assures 

A that the correspondent is B. 

7. A returns N2, encrypted using B's public key, to assure B that its correspondent is A. 

 

Figure 10.3. Public-Key Distribution Scenario 

 

 

 



Thus, a total of seven messages are required. However, the initial four messages need be used 

only infrequently because both A and B can save the other's public key for future use, a 

technique known as caching. Periodically, a user should request fresh copies of the public 

keys of its correspondents to ensure currency. 

 

Public-Key Certificates 

The scenario of Figure 10.3 is attractive, yet it has some drawbacks. The public-key authority 

could be somewhat of a bottleneck in the system, for a user must appeal to the authority for a 

public key for every other user that it wishes to contact. As before, the directory of names and 

public keys maintained by the authority is vulnerable to tampering. 

An alternative approach, first suggested by Kohnfelder [KOHN78], is to use certificates that 

can be used by participants to exchange keys without contacting a public-key authority, in a 

way that is as reliable as if the keys were obtained directly from a public-key authority. In 

essence, a certificate consists of a public key plus an identifier of the key owner, with the 

whole block signed by a trusted third party. 

Typically, the third party is a certificate authority, such as a government agency or a financial 

institution, that is trusted by the user community. A user can present his or her public key to 

the authority in a secure manner, and obtain a certificate. The user can then publish the 

certificate. Anyone needed this user's public key can obtain the certificate and verify that it is 

valid by way of the attached trusted signature. A participant can also convey its key 

information to another by transmitting its certificate. Other participants can verify that the 

certificate was created by the authority. We can place the following requirements on this 

scheme: 

1. Any participant can read a certificate to determine the name and public key of the 

certificate's owner. 

2. Any participant can verify that the certificate originated from the certificate authority and 

is not counterfeit. 

3. Only the certificate authority can create and update certificates. 

These requirements are satisfied by the original proposal in [KOHN78]. Denning [DENN83] 

added the following additional requirement: 

4. Any participant can verify the currency of the certificate. 

A certificate scheme is illustrated in Figure 10.4. Each participant applies to the certificate 

authority, supplying a public key and requesting a certificate. 

 



Figure 10.4. Exchange of Public-Key Certificates 

 

 

Application must be in person or by some form of secure authenticated communication. For 

participant A, the authority provides a certificate of the form 

CA = E(PRauth, [T||IDA||PUa]) 

 

where PRauth is the private key used by the authority and T is a timestamp. A may then pass 

this certificate on to any other participant, who reads and verifies the certificate as follows: 

 

D(PUauth, CA) = D(PUauth, E(PRauth, [T||IDA||PUa])) = (T||IDA||PUa) 

 

The recipient uses the authority's public key, PUauth to decrypt the certificate. Because the 

certificate is readable only using the authority's public key, this verifies that the certificate 

came from the certificate authority. The elements IDA and PUa provide the recipient with the 

name and public key of the certificate's holder. The timestamp T validates the currency of the 

certificate. The timestamp counters the following scenario. A's private key is learned by an 

adversary. A generates a new private/public key pair and applies to the certificate authority 

for a new certificate. Meanwhile, the adversary replays the old certificate to B. If B then 

encrypts messages using the compromised old public key, the adversary can read those 

messages. 

In this context, the compromise of a private key is comparable to the loss of a credit card. The 

owner cancels the credit card number but is at risk until all possible communicants are aware 



that the old credit card is obsolete. Thus, the timestamp serves as something like an 

expiration date. If a certificate is sufficiently old, it is assumed to be expired. 

One scheme has become universally accepted for formatting public-key certificates: the 

X.509 standard. X.509 certificates are used in most network security applications, including 

IP security, secure sockets layer (SSL), secure electronic transactions (SET), and S/MIME. 

 

Diffie-Hellman Key Exchange 

The first published public-key algorithm appeared in the seminal paper by Diffie and 

Hellman that defined public-key cryptography and is generally referred to as Diffie-Hellman 

key exchange. 

 

A number of commercial products employ this key exchange technique. 

 

The purpose of the algorithm is to enable two users to securely exchange a key that can then 

be used for subsequent encryption of messages. The algorithm itself is limited to the 

exchange of secret values. 

The Diffie-Hellman algorithm depends for its effectiveness on the difficulty of computing 

discrete logarithms. Briefly, we can define the discrete logarithm in the following way. First, 

we define a primitive root of a prime number p as one whose powers modulo p generate all 

the integers from 1 to p 1. That is, if a is a primitive root of the prime number p, then the 

numbers 

a mod p, a
2 

mod p,..., a
p1

 mod p are distinct and consist of the integers from 1 through p 1 in 

some permutation. 

For any integer b and a primitive root a of prime number p, we can find a unique exponent i 

such that 

b ≡a
i
(mod p) wh r  0≤  ≤ (p 1) 

The exponent i is referred to as the discrete logarithm of b for the base a, mod p. 

 

The Algorithm 

Figure 10.7 summarizes the Diffie-Hellman key exchange algorithm. For this scheme, there 

are two publicly known numbers: a prime number q and an integer that is a primitive root of 

q . Suppose the users A and B wish to exchange a key. User A selects a random integer Xr <A 

and computes YA = a 
XA 

mod q. Similarly, user B independently selects a random integerX A 



< q and computes YB = a XB mod q. Each side keeps the X value private and makes theY 

value available publicly to the other side. User A computes the key as 

K = (YB)
XA

 mod q and user B computes the key as K = (YA)
XB 

mod q. These two calculations 

produce identical results: 

 

K= (YB)
XA 

mod q 

= (a
XB 

mod q)
XA

 mod q 

= (aXB)
XA

 mod q    by the rules of modular arithmetic 

= (a
XB XA 

mod q 

= (aXA)
XB 

mod q 

= (a
XA

 mod q) 

= (a
XA 

mod q)
XB

 mod q 

= (YA)
XB 

mod q 

 

Figure 10.7. The Diffie-Hellman Key Exchange Algorithm 

 



 

 

 

Authentication Functions 

Any message authentication or digital signature mechanism has two levels of functionality. 

At the lower level, there must be some sort of function that produces an authenticator: a value 

to be used to authenticate a message. This lower-level function is then used as a primitive in a 

higher-level authentication protocol that enables a receiver to verify the authenticity of a 

message. 



This section is concerned with the types of functions that may be used to produce an 

authenticator. These may be grouped into three classes, as follows: 

Message encryption: The ciphertext of the entire message serves as its authenticator 

Message authentication code (MAC): A function of the message and a secret key that 

produces a fixed-length value that serves as the authenticator 

Hash function: A function that maps a message of any length into a fixed-length hash value, 

which serves as the authenticator 

 

Message Encryption 

Message encryption by itself can provide a measure of authentication. The analysis differs for 

symmetric and public-key encryptionschemes. 

Symmetric Encryption 

Consider the straightforward use of symmetric encryption (Figure 11.1a). A message M 

transmitted from source A to destination B is encrypted using a secret key K shared by A and 

B. If no other party knows the key, then confidentiality is provided: No other party can 

recover the plaintext of the message. 

 

Figure 11.1. Basic Uses of Message Encryption 

 



 

 

 

Hash Function 

A variation on the message authentication code is the one-way hash function. As with the 

message authentication code, a hash function accepts a variable-size message M as input and 

produces a fixed-size output, referred to as a hash code H(M). Unlike a MAC, a hash code 

does not use a key but is a function only of the input message. The hash code is also referred 

to as a message digest or hash value. The hash code is a function of all the bits of the 

message and provides an error-detection capability: A change to any bit or bits in the 

message results in a change to the hash code. 

Figure 11.5 illustrates a variety of ways in which a hash code can be used to provide message 

authentication, as follows: 



a. The message plus concatenated hash code is encrypted using symmetric encryption. This is 

identical in structure to the internal error control strategy shown in Figure 11.2a. The same 

line of reasoning applies: Because only A and B share the secret key, the message must have 

come from A and has not been altered. The hash code provides the structure or redundancy 

required to achieve authentication. Because encryption is applied to the entire message plus 

hash code, confidentiality is also provided. 

b. Only the hash code is encrypted, using symmetric encryption. This reduces the processing 

burden for those applications that do not require confidentiality. Note that the combination of 

hashing and encryption results in an overall function that is, in fact, a MAC (Figure 11.4a). 

That is, E(K, H(M)) is a function of a variable-length message M and a secret key K, and it 

produces a fixed-size output that is secure against an opponent who does not know the secret 

key. 

c. Only the hash code is encrypted, using public-key encryption and using the sender's private 

key. As with (b), this provides authentication. It also provides a digital signature, because 

only the sender could have produced the encrypted hash code. In fact, this is the essence of 

the digital signature technique. 

d. If confidentiality as well as a digital signature is desired, then the message plus the private-

key-encrypted hash code can be encrypted using a symmetric secret key. This is a common 

technique. 

e. It is possible to use a hash function but no encryption for message authentication. The 

technique assumes that the two communicating parties share a common secret value S. A 

computes the hash value over the concatenation of M and S and appends the resulting hash 

value to M. Because B possesses S, it can recompute the hash value to verify. Because the 

secret value itself is not sent, an opponent cannot modify an intercepted message and cannot 

generate a false message. 

f. Confidentiality can be added to the approach of (e) by encrypting the entire message plus 

the hash code. 

 

Figure 11.5. Basic Uses of Hash Function 

 



 

 

When confidentiality is not required, methods (b) and (c) have an advantage over those that 

encrypt the entire message in that less computation is required. Nevertheless, there has been 

growing interest in techniques that avoid encryption (Figure 11.5e). Several reasons for this 

interest are pointed out in [TSUD92]:  



 Encryption software is relatively slow. Even though the amount of data to be 

encrypted per message is small, there may be a steady stream of messages into and 

out of a system. 

 Encryption hardware costs are not negligible. Low-cost chip implementations of DES 

are available, but the cost adds up if all nodes in a network must have this capability. 

 Encryption hardware is optimized toward large data sizes. For small blocks of data, a 

high proportion of the time is spent in initialization/invocation overhead. 

 Encryption algorithms may be covered by patents. For example, until the patent 

expired, RSA was patented and had to be licensed, adding a cost 


