
CHAPTER 2 

CLASSICAL ENCRYPTION TECHNIQUES 

Symmetric encryption, also referred to as conventional encryption or single-key encryption, was 

the only type of encryption in use prior to the development of public-key encryption in the 

1970s. It remains by far the most widely used of the two types of encryption. Part One examines 

a number of symmetric ciphers. In this chapter, we begin with a look at a general model for the 

symmetric encryption process; this will enable us to understand the context within which the 

algorithms are used. Next, we examine a variety of algorithms in use before the computer era. 

Finally, we look briefly at a different approach known as steganography. Chapter 3 examines the 

most widely used symmetric cipher: DES. 

Before beginning, we define some terms. An original message is known as the plaintext, while 

the coded message is called the ciphertext. The process of converting from plaintext to 

ciphertext is known as enciphering or encryption; restoring the plaintext from the ciphertext is 

deciphering or decryption. The many schemes used for encryption constitute the area of study 

known as cryptography. Such a scheme is known as a cryptographic system or a cipher. 

Techniques used for deciphering a message without any knowledge of the enciphering details 

fall into the area of cryptanalysis. Cryptanalysis is what the layperson calls "breaking the code." 

The areas of cryptography and cryptanalysis together are called cryptology. 

 

Symmetric Cipher Model 

A symmetric encryption scheme has five ingredients (Figure 2.1): 

Plaintext: This is the original intelligible message or data that is fed into the algorithm as input. 

Encryption algorithm: The encryption algorithm performs various substitutions and 

transformations on the plaintext. 

Secret key: The secret key is also input to the encryption algorithm. The key is a value 

independent of the plaintext and of the algorithm. The algorithm will produce a different output 

depending on the specific key being used at the time. The exact substitutions and transformations 

performed by the algorithm depend on the key. 



Cipher text: This is the scrambled message produced as output. It depends on the plaintext and 

the secret key. For a given message, two different keys will produce two different cipher texts. 

The cipher text is an apparently random stream of data and, as it stands, is unintelligible. 

Decryption algorithm: This is essentially the encryption algorithm run in reverse. It takes the 

cipher text and the secret key and produces the original plaintext. 

 

Figure 2.1. Simplified Model of Conventional Encryption 

 

 

 

There are two requirements for secure use of conventional encryption: 

1. We need a strong encryption algorithm. At a minimum, we would like the algorithm to be 

such that an opponent who knows the algorithm and has access to one or more ciphertexts would 

be unable to decipher the ciphertext or figure out the key. This requirement is usually stated in a 

stronger form: The opponent should be unable to decrypt ciphertext or discover the key even if 

he or she is in possession of a number of ciphertexts together with the plaintext that produced 

each ciphertext. 

2. Sender and receiver must have obtained copies of the secret key in a secure fashion and must 

keep the key secure. If someone can discover the key and knows the algorithm, all 

communication using this key is readable. 

We assume that it is impractical to decrypt a message on the basis of the ciphertext plus 

knowledge of the encryption/decryption algorithm. In other words, we do not need to keep the 

algorithm secret; we need to keep only the key secret. This feature of symmetric encryption is 



what makes it feasible for widespread use. The fact that the algorithm need not be kept secret 

means that manufacturers can and have developed low-cost chip implementations of data 

encryption algorithms. These chips are widely available and incorporated into a number of 

products. With the use of symmetric encryption, the principal security problem is maintaining 

the secrecy of the key. 

Let us take a closer look at the essential elements of a symmetric encryption scheme, using 

Figure 2.2. A source produces a message in plaintext, X = [X1, X2, ..., XM]. The M elements of X 

are letters in some finite alphabet. Traditionally, the alphabet usually consisted of the 26 capital 

letters. Nowadays, the binary alphabet {0, 1} is typically used. For encryption, a key of the form 

K = [K1, K2, ..., KJ] is generated. If the key is generated at the message source, then it must also 

be provided to the destination by means of some secure channel. Alternatively, a third party 

could generate the key and securely deliver it to both source and destination. 

Figure 2.2. Model of Conventional Cryptosystem 

With the message X and the encryption key K as input, the encryption algorithm forms the 

ciphertext Y = [Y1, Y2, ..., YN]. We can write this As Y = E(K, X) 

This notation indicates thatY is produced by using encryption algorithm E as a function of the 

plaintexXt , with the specific function determined by the value of the key K. 

The intended receiver, in possession of the key, is able to invert the transformation: 



X = D(K, Y) 

An opponent, observing Y but not having access to K or X, may attempt to recover X or K or both 

X and K. It is assumed that the opponent knows the encryption (E) and decryption (D) 

algorithms. If the opponent is interested in only this particular message, then the focus of the 

effort is to recover X by generating a plaintext estimate . Often, however, the opponent is 

interested in being able to read future messages as well, in which case an attempt is made to 

recover K by generating an estimate . 

Cryptography 

Cryptographic systems are characterized along three independent dimensions: 

1. The type of operations used for transforming plaintext to ciphertext. All encryption 

algorithms are based on two general principles: substitution, in which each element in the 

plaintext (bit, letter, group of bits or letters) is mapped into another element, and transposition, in 

which elements in the plaintext are rearranged. The fundamental requirement is that no 

information be lost (that is, that all operations are reversible). Most systems, referred to as 

product systems, involve multiple stages of substitutions and transpositions. 

2. The number of keys used. If both sender and receiver use the same key, the system is 

referred to as symmetric, single-key, secret-key, or conventional encryption. If the sender and 

receiver use different keys, the system is referred to as asymmetric, two-key, or public-key 

encryption. 

3.The way in which the plaintext is processed. A block cipher processes the input one block of 

elements at a time, producing an output block for each input block. A stream cipher processes 

the input elements continuously, producing output one element at a time, as it goes along. 

Cryptanalysis 

Typically, the objective of attacking an encryption system is to recover the key in use rather then 

simply to recover the plaintext of a single ciphertext. There are two general approaches to 

attacking a conventional encryption scheme: 

 Cryptanalysis: Cryptanalytic attacks rely on the nature of the algorithm plus perhaps 

some knowledge of the general characteristics of the plaintext or even some sample 

plaintext-ciphertext pairs. This type of attack exploits the characteristics of the algorithm 

to attempt to deduce a specific plaintext or to deduce the key being used. 



 Brute-force attack: The attacker tries every possible key on a piece of ciphertext until an 

intelligible translation into plaintext is obtained. On average, half of all possible keys 

must be tried to achieve success. If either type of attack succeeds in deducing the key, the 

effect is catastrophic: All future and past messages encrypted with that key are 

compromised. 

Table 2.1 summarizes the various types of cryptanalytic attacks, based on the amount of 

information known to the cryptanalyst. The most difficult problem is presented when all that is 

available is the cipher text only. In some cases, not even the encryption algorithm is known, but 

in general we can assume that the opponent does know the algorithm used for encryption. One 

possible attack under these circumstances is the brute-force approach of trying all possible keys. 

If the key space is very large, this becomes impractical. Thus, the opponent must rely on an 

analysis of the cipher text itself, generally applying various statistical tests to it. 

 

Table 2.1. Types of Attacks on Encrypted Messages 

Type of Attack Known to Cryptanalyst 

Cipher text only 

 Encryption algorithm 

 Cipher text 

Known plaintext 

 Encryption algorithm 

 Cipher text 

 One or more plaintext-cipher text pairs formed with the secret key 

Chosen plaintext 

 Encryption algorithm 

 Cipher text 

 Plaintext message chosen by cryptanalyst, together with its corresponding ciphertext 

generated with the secret key 

Chosen cipher text 

 Encryption algorithm 

 Cipher text 

 



 Purported ciphertext chosen by cryptanalyst, together with its corresponding decrypted 

plaintext generated with the secret key 

Chosen text 

 Encryption algorithm 

 Ciphertext 

 Plaintext message chosen by cryptanalyst, together with its corresponding 

 ciphertext generated with the secret key 

 Purported ciphertext chosen by cryptanalyst, together with its corresponding decrypted 

plaintext generated with the secret key 

 

A brute-force attack involves trying every possible key until an intelligible translation of the 

ciphertext into plaintext is obtained. On average, half of all possible keys must be tried to 

achieve success.  

Results are shown for four binary key sizes. The 56-bit key size is used with the DES (Data 

Encryption Standard) algorithm, and the 168-bit key size is used for triple DES. The minimum 

key size specified for AES (Advanced Encryption Standard) is 128 bits. Results are also shown 

for what are called substitution codes that use a 26-character key (discussed later), in which all 

possible permutations of the 26 characters serve as keys. For each key size, the results are shown 

assuming that it takes 1 ms to perform a single decryption, which is a reasonable order of 

magnitude for today's machines. With the use of massively parallel organizations of 

microprocessors, it may be possible to achieve processing rates many orders of magnitude 

greater.  

Substitution Techniques 

In this section and the next, we examine a sampling of what might be called classical encryption 

techniques. A study of these techniques enables us to illustrate the basic approaches to 

symmetric encryption used today and the types of cryptanalytic attacks that must be anticipated. 

The two basic building blocks of all encryption techniques are substitution and transposition. We 

examine these in the next two sections. Finally, we discuss a system that combines both 

substitution and transposition. A substitution technique is one in which the letters of plaintext are 

replaced by other letters or by numbers or symbols. If the plaintext is viewed as a sequence of 

bits, then substitution involves replacing plaintext bit patterns with ciphertext bit patterns 



Caesar Cipher 

The earliest known use of a substitution cipher, and the simplest, was by Julius Caesar. The 

Caesar cipher involves replacing each letter of the alphabet with the letter standing three places 

further down the alphabet. For example, 

plain: meet me after the toga party 

Cipher: PHHW PH DIWHU WKH WRJD SDUWB 

Note that the alphabet is wrapped around, so that the letter following Z is A. We can define the 

transformation by listing all possibilities, as follows: 

plain: a b c d e f g h i j k l m n o p q r s t u v w x y z 

cipher: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C 

Let us assign a numerical equivalent to each letter: 

a   b   c   d   e   f   g   h    i   j    k      l    m 

0   1   2   3   4  5   6   7   8    9   10   11   12 

n     o     p     q     r    s     t     u     v    w    x   y    z 

13   14   15  16  17  18   19   20  21   22  23  24  25 

Then the algorithm can be expressed as follows. For each plaintext letter p, substitute the 

ciphertext letter C: 

C = E(3, p) = (p + 3) mod 26 

A shift may be of any amount, so that the general Caesar algorithm is 

C = E(k, p) = (p + k) mod 26 

where k takes on a value in the range 1 to 25. The decryption algorithm is simply 

p = D(k, C) = (C k) mod 26 

If it is known that a given ciphertext is a Caesar cipher, then a brute-force cryptanalysis is easily 

performed: Simply try all the 25 possible keys. Figure 2.3 shows the results of applying this 

strategy to the example ciphertext. In this case, the plaintext leaps out as occupying the third line. 



  

 

 

 Three important characteristics of this problem enabled us to use a brute-force 

cryptanalysis: 

1. The encryption and decryption algorithms are known. 



2. There are only 25 keys to try. 

3. The language of the plaintext is known and easily recognizable 

In most networking situations, we can assume that the algorithms are known. What generally 

makes brute-force cryptanalysis impractical is the use of an algorithm that employs a large 

number of keys. For example, the triple DES algorithm, examined in Chapter 6, makes use of a 

168-bit key, giving a key space of 2 168 or greater than 3.7 x 10^5 possible keys. The third 

characteristic is also significant. If the language of the plaintext is unknown, then plaintext 

output may not be recognizable. Furthermore, the input may be abbreviated or compressed in 

some fashion, again making recognition difficult.  

Monoalphabetic Ciphers 

With only 25 possible keys, the Caesar cipher is far from secure. A dramatic increase in the key 

space can be achieved by allowing an arbitrary substitution. Recall the assignment for the Caesar 

cipher: 

plain: a b c d e f g h i j k l m n o p q r s t u v w x y z 

cipher: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C 

If, instead, the "cipher" line can be any permutation of the 26 alphabetic characters, then there 

are 26! or greater than 4 x 10^26 possible keys. This is 10 orders of magnitude greater than the 

key space for DES and would seem to eliminate brute-force techniques for cryptanalysis. Such 

an approach is referred to as a monoalphabetic substitution cipher, because a single cipher 

alphabet (mapping from plain alphabet to cipher alphabet) is used per message. There is, 

however, another line of attack. If the cryptanalyst knows the nature of the plaintext (e.g., 

noncompressed English text), then the analyst can exploit the regularities of the language. To see 

how such a cryptanalysis might proceed. The ciphertext to be solved is 

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ 

VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX 

EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ 

As a first step, the relative frequency of the letters can be determined and compared to a standard 

frequency distribution for English, such as is shown in Figure 2.5. If the message were long 

enough, this technique alone might be sufficient, but because this is a relatively short message, 

we cannot expect an exact match. In any case, the relative frequencies of the letters in the 

ciphertext (in percentages) are as follows: 



P 13.33         H 5.83        F 3.33         B 1.67         C 0.00 

Z 11.67        D 5.00        W 3.33        G 1.67         K 0.00 

S 8.33          E 5.00         Q 2.50         Y 1.67         L 0.00 

U 8.33         V 4.17         T 2.50          I 0.83          N 0.00 

O 7.50        X 4.17          A 1.67         J 0.83           R 0.00 

M 6.67 

Figure 2.5. Relative Frequency of Letters in English Text

 

 

Comparing this breakdown with Figure 2.5, it seems likely that cipher letters P and Z are the 

equivalents of plain letters e and t, but it is not certain which is which. The letters S, U, O, M, 

and H are all of relatively high frequency and probably correspond to plain letters from the set 

{a, h, i, n, o, r, s}.The letters with the lowest frequencies (namely, A, B, G, Y, I, J) are likely 

included in the set {b, j, k, q, v, x, z}. There are a number of ways to proceed at this point. We 

could make some tentative assignments and start to fill in the plaintext to see if it looks like a 



reasonable "skeleton" of a message. A more systematic approach is to look for other regularities. 

For example, certain words may be known to be in the text. Or we could look for repeating 

sequences of cipher letters and try to deduce their plaintext equivalents. 

A powerful tool is to look at the frequency of two-letter combinations, known as digrams. A 

table similar to Figure 2.5 could be drawn up showing the relative frequency of digrams. The 

most common such digram is th. In our cipher text, the most common digram is ZW, which 

appears three times. So we make the correspondence of Z with t and W with h. Then, by our 

earlier hypothesis, we can equate P with e. Now notice that the sequence ZWP appears in the 

cipher text, and we can translate that sequence as "the." This is the most frequent trigram (three-

letter combination) in English, which seems to indicate that we are on the right track. Next, 

notice the sequence ZWSZ in the first line. We do not know that these four letters form a 

complete word, but if they do, it is of the form th_t. If so, S equates with a. So far, then, we have 

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ 

t a e e te a that e e a a 

VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX 

e t ta t ha e ee a e th t a 

EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ 

e e e tat e the t 

Only four letters have been identified, but already we have quite a bit of the message. Continued 

analysis of frequencies plus trial and error should easily yield a solution from this point. The 

complete plaintext, with spaces added between words, follows: it was disclosed yesterday that 

several informal but direct contacts have been made with political representatives of the viet 

cong in Moscow Monoalphabetic ciphers are easy to break because they reflect the frequency 

data of the original alphabet. A countermeasure is to provide multiple substitutes, known as 

homophones, for a single letter. For example, the letter e could be assigned a number of different 

cipher symbols, such as 16, 74, 35, and 21, with each homophone used in rotation, or randomly. 

If the number of symbols assigned to each letter is proportional to the relative frequency of that 

letter, then single-letter frequency information is completely obliterated. The great 

mathematician Carl Friedrich Gauss believed that he had devised an unbreakable cipher using 

homophones. However, even with homophones, each element of plaintext affects only one 

element of ciphertext, and multiple-letter patterns (e.g., digram frequencies) still survive in the 



ciphertext, making cryptanalysis relatively straightforward. Two principal methods are used in 

substitution ciphers to lessen the extent to which the structure of the plaintext survives in the 

ciphertext: One approach is to encrypt multiple letters of plaintext, and the other is to use 

multiple cipher alphabets. We briefly examine each. 

Playfair Cipher 

The best-known multiple-letter encryption cipher is the Playfair, which treats digrams in the 

plaintext as single units and translates these units into ciphertext digrams. 

The Playfair algorithm is based on the use of a 5 x 5 matrix of letters constructed using a 

keyword. Here is an example, solved by Lord Peter Wimsey in Dorothy Sayers's Have His 

Carcase. 

M O N A R 

C H Y B D 

E F G I/J K 

L P Q S T 

U V W X Z 

In this case, the keyword is monarchy. The matrix is constructed by filling in the letters of the 

keyword (minus duplicates) from left to right and from top to bottom, and then filling in the 

remainder of the matrix with the remaining letters in alphabetic order. The letters I and J count as 

one letter. Plaintext is encrypted two letters at a time, according to the following rules: 

1. Repeating plaintext letters that are in the same pair are separated with a filler letter, such as x, 

so that balloon would be treated as ba lx lo on. 

2. Two plaintext letters that fall in the same row of the matrix are each replaced by the letter to 

the right, with the first element of the row circularly following the last. For example, ar is 

encrypted as RM. 

3. Two plaintext letters that fall in the same column are each replaced by the letter beneath, with 

the top element of the column circularly following the last. For example, mu is encrypted as CM. 

4. Otherwise, each plaintext letter in a pair is replaced by the letter that lies in its own row and 

the column occupied by the other plaintext letter. Thus, hs becomes BP and ea becomes IM (or 

JM, as the encipherer wishes). 

The Playfair cipher is a great advance over simple monoalphabetic ciphers. For one thing, 

whereas there are only 26 letters, there are 26 x 26 = 676 digrams, so that identification of 



individual digrams is more difficult. Furthermore, the relative frequencies of individual letters 

exhibit a much greater range than that of digrams, making frequency analysis much more 

difficult. For these reasons, the Playfair cipher was for a long time considered unbreakable. It 

was used as the standard field system by the British Army in World War I and still enjoyed 

considerable use by the U.S. Army and other Allied forces during World War II. Despite this 

level of confidence in its security, the Playfair cipher is relatively easy to break because it still 

leaves much of the structure of the plaintext language intact. A few hundred letters of ciphertext 

are generally sufficient. 

Hill Cipher 

Another interesting multiletter cipher is the Hill cipher, developed by the mathematician Lester 

Hill in 1929. The encryption algorithm takes m successive plaintext letters and substitutes for 

them m ciphertext letters. The substitution is determined by m linear equations in which each 

character is assigned a numerical value (a = 0, b = 1 ... z = 25). For m = 3, the system can be 

described as follows: 

c1 = (k11P1 + k12P2 + k13P3) mod 26 

c2 = (k21P1 + k22P2 + k23P3) mod 26 

c3 = (k31P1 + k32P2 + k33P3) mod 26 

This can be expressed in term of column vectors and matrices: 

 

or 

C = KP mod 26 

where C and P are column vectors of length 3, representing the plaintext and ciphertext, and K is 

a 3 x 3 matrix, representing the encryption key. Operations are performed mod 26. For example, 

consider the plaintext "paymoremoney" and use the encryption key 



 

The first three letters of the plaintext are represented by the vector 

 

the ciphertext for the entire plaintext is LNSHDLEWMTRW. 

Decryption requires using the inverse of the matrix K. The inverse K-1 of a matrix K is defined 

by the equation KK-1 = K-1K = I, where I is the matrix that is all zeros except for ones along 

the main diagonal from upper left to lower right. The inverse of a matrix does not always exist, 

but when it does, it satisfies the preceding equation. In this case, the inverse 

 

This is demonstrated as follows: 

 

It is easily seen that if the matrix K-1 is applied to the ciphertext, then the plaintext is recovered. 

To explain how the inverse of a matrix is determined, we make an exceedingly brief excursion 

into linear algebra. For any square matrix (m x m) the determinant equals the sum 

of all the products that can be formed by taking exactly one element from each row and exactly 

one element from each column, with certain of the product terms preceded by a minus sign. For a 

2*2 matrix,  



 

the determinant is k11k22 k12k21. For a 3 x 3 matrix, the value of the determinant isk 11k22k33 

+ k21k32k13 + k31k12k23 k31k22k13 

k21k12k33 k11k32k23. If a square matrixA has a nonzero determinant, then the inverse of the 

matrix is computed as  ij =      (Dij)/ded(A), where (Dij) is the subdeterminant formed by 

deleting the ith row and the jth column of A and det(A) is the determinant of A. For our 

purposes, all arithmetic is done mod 26. 

In general terms, the Hill system can be expressed as follows: 

C = E(K, P) = KP mod 26 

P = D(K, P) =   C mod 26 =    KP = P 

As with Playfair, the strength of the Hill cipher is that it completely hides single-letter 

frequencies. Indeed, with Hill, the use of a larger 

matrix hides more frequency information. Thus a 3 x 3 Hill cipher hides not only single-letter but 

also two-letter frequency information. 

Although the Hill cipher is strong against a cipher text-only attack, it is easily broken with a 

known plaintext attack. For an m x m Hill cipher, 

suppose we have m plaintext-ciphe r text pairs, each of length m. We label the pairs 

unknown key matrix K. Now define two m x m matrices X = (Pij) and Y = (Cij). Then we can 

form the matrix equation Y = KX. If X has an inverse, then we can determine K = YX1.If X is 

not invertible, then a new version of X can be formed with additional plaintext-ciphertext pairs 

until an invertible X is obtained. Suppose that the plaintext "friday" is encrypted using a 2 x 2 

Hill cipher to yield the ciphertext PQCFKU. Thus, we know that 

 



Using the first two plaintext-ciphertext pairs, we have 

 

The inverse of X can be computed: 

 

Polyalphabetic Ciphers 

Another way to improve on the simple monoalphabetic technique is to use different 

monoalphabetic substitutions as one proceeds through the plaintext message. The general name 

for this approach is polyalphabetic substitution cipher. All these techniques have the following 

features in common: 

1. A set of related monoalphabetic substitution rules is used. 

2. A key determines which particular rule is chosen for a given transformation. 

The best known, and one of the simplest, such algorithm is referred to as the Vigenère cipher. In 

this scheme, the set of related monoalphabetic substitution rules consists of the 26 Caesar 

ciphers, with shifts of 0 through 25. Each cipher is denoted by a key letter,Mwhich is the 

ciphertext letter that substitutes for the plaintext letter a. Thus, a Caesar cipher with a shift of 3 is 

denoted by the key value d. To aid in understanding the scheme and to aid in its use, a matrix 

known as the Vigenère tableau is constructed (Table 2.3). Each of the 26 ciphers is laid out 

horizontally, with the key letter for each cipher to its left. A normal alphabet for the plaintext 

runs across the top. The process of encryption is simple: Given a key letter x and a plaintext 

letter y, the ciphertext letter is at the intersection of the row labeled x and the column labeled y; 

in this case the ciphertext is V. 

 



 

Table 2.3. The Modern Vigenère Tableau 

To encrypt a message, a key is needed that is as long as the message. Usually, the key is a 

repeating keyword. For example, if the keyword is deceptive, the message "we are discovered 

save yourself" is encrypted as follows: 

key: deceptivedeceptivedeceptive 

plaintext: wearediscoveredsaveyourself 

ciphertext: ZICVTWQNGRZGVTWAVZHCQYGLMGJ 

Decryption is equally simple. The key letter again identifies the row. The position of the 

ciphertext letter in that row determines the column, and the plaintext letter is at the top of that 

column. The strength of this cipher is that there are multiple ciphertext letters for each plaintext 

letter, one for each unique letter of the keyword. Thus, the letter frequency information is 

obscured. However, not all knowledge of the plaintext structure is lost. For example, Figure 2.6 

shows the frequency distribution for a Vigenère cipher with a keyword of length 9. An 

improvement is achieved over the Playfair cipher, but considerable frequency information 

remains. 



It is instructive to sketch a method of breaking this cipher, because the method reveals some of 

the mathematical principles that apply in cryptanalysis. First, suppose that the opponent believes 

that the ciphertext was encrypted using either monoalphabetic substitution or a Vigenère cipher. 

A simple test can be made to make a determination. If a monoalphabetic substitution is used, 

then the statistical properties of the ciphertext should be the same as that of the language of the 

plaintext. Thus, referring to Figure 2.5, there should be one cipher letter with a relative frequency 

of occurrence of about 12.7%, one with about 9.06%, and so on. If only a single message is 

available for analysis, we would not expect an exact match of this small sample with the 

statistical profile of the plaintext language. Nevertheless, if the correspondence is close, we can 

assume a monoalphabetic substitution. If, on the other hand, a Vigenère cipher is suspected, then 

progress depends on determining the length of the keyword, as will be seen in a moment. For 

now, let us concentrate on how the keyword length can be determined. The important insight that 

leads to a solution is the following: If two identical sequences of plaintext letters occur at a 

distance that is an integer multiple of the keyword length, they will generate identical ciphertext 

sequences. In the foregoing example, two instances of the sequence "red" are separated by nine 

character positions. Consequently, in both cases, r is encrypted using key letter e, e is encrypted 

using key letter p, and d is encrypted using keyM letter t. Thus, in both cases the ciphertext 

sequence is VTW. An analyst looking at only the ciphertext would detect the repeated sequences 

VTW at a displacement of 9 and make the assumption that the keyword is either three or nine 

letters in length. The appearance of VTW twice could be by chance and not reflect identical 

plaintext letters encrypted with identical key letters. However, if the message is long enough, 

there will be a number of such repeated cipher text sequences. By looking for common factors in 

the displacements of the various sequences, the analyst should be able to make a good guess of 

the keyword length. Solution of the cipher now depends on an important insight. If the keyword 

length is N, then the cipher, in effect, consists of N monoalphabetic substitution ciphers. For 

example, with the keyword DECEPTIVE, the letters in positions 1, 10, 19, and so on are all 

encrypted with the same monoalphabetic cipher. Thus, we can use the known frequency 

characteristics of the plaintext language to attack each of the monoalphabetic ciphers separately. 

The periodic nature of the keyword can be eliminated by using a nonrepeating keyword that is as 

long as the message itself. Vigenère proposed what is referred to as an autokey system, in which 

a keyword is concatenated with the plaintext itself to provide a running key. 



For our example, 

key: deceptivewearediscoveredsav 

plaintext: wearediscoveredsaveyourself 

ciphertext: ZICVTWQNGKZEIIGASXSTSLVVWLA 

The ultimate defense against such a cryptanalysis is to choose a keyword that is as long as the 

plaintext and has no statistical relationship to it. Such a system was introduced by an AT&T 

engineer named Gilbert Vernam in 1918. His system works on binary data rather than letters. 

The system can be expressed succinctly as follows: 

ci = pi + ki 

where 

pi = ith binary digit of plaintext 

ki = ith binary digit of key 

ci = ith binary digit of cipher text 

‘+’= exclusive-or (XOR) operation 

Thus, the ciphertext is generated by performing the bitwise XOR of the plaintext and the key. 

Because of the properties of the XOR, decryption simply involves the same bitwise operation: 

pi = ci +ki 

The essence of this technique is the means of construction of the key. Vernam proposed the use 

of a running loop of tape that eventually repeated the key, so that in fact the system worked with 

a very long but repeating keyword. Although such a scheme, with a long key, presents 

formidable cryptanalytic difficulties, it can be broken with sufficient ciphertext, the use of 

known or probable plaintext sequences, or both. 

One-Time Pad 

An Army Signal Corp officer, Joseph Mauborgne, proposed an improvement to the Vernam 

cipher that yields the ultimate in security. Mauborgne suggested using a random key that is as 

long as the message, so that the key need not be repeated. In addition, the key is to 

be used to encrypt and decrypt a single message, and then is discarded. Each new message 

requires a new key of the same length as the new message. Such a scheme, known as a one-time 

pad, is unbreakable. It produces random output that bears no statistical relationship to the 

plaintext. Because the ciphertext contains no information whatsoever about the plaintext, there is 

simply no way to break the code. An example should illustrate our point. Suppose that we are 



using a Vigenère scheme with 27 characters in which the twenty-seventh character is the space 

character, but with a one-time key that is as long as the message. Thus, the tableau of Table 2.3 

must be expanded to 27 x 27. Consider the ciphertext 

ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS 

 We now show two different decryptions using two different keys: 

ciphertext: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS 

Key: pxlmvmsydofuyrvzwc tnlebnecvgdupahfzzlmnyih 

Plaintext: mr mustard with the candlestick in the hall 

Cipher text: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS 

Key: mfugpmiydgaxgoufhklllmhsqdqogtewbqfgyovuhwt 

Plaintext: miss scarlet with the knife in the library 

Suppose that a cryptanalyst had managed to find these two keys. Two plausible plaintexts are 

produced. How is the cryptanalyst to decide which is the correct decryption (i.e., which is the 

correct key)? If the actual key were produced in a truly random fashion, then them cryptanalyst 

cannot say that one of these two keys is more likely than the other. Thus, there is no way to 

decide which key is correct and therefore which plaintext is correct. 

In fact, given any plaintext of equal length to the ciphertext, there is a key that produces that 

plaintext. Therefore, if you did an exhaustive search of all possible keys, you would end up with 

many legible plaintexts, with no way of knowing which was the intended plaintext. 

Therefore, the code is unbreakable. The security of the one-time pad is entirely due to the 

randomness of the key. If the stream of characters that constitute the key is truly random, then 

the stream of characters that constitute the ciphertext will be truly random. Thus, there are no 

patterns or regularities that a cryptanalyst can use to attack the ciphertext. In theory, we need 

look no further for a cipher. The one-time pad offers complete security but, in practice, has two 

fundamental difficulties: 

1. There is the practical problem of making large quantities of random keys. Any heavily used 

system might require millions of random characters on a regular basis. Supplying truly random 

characters in this volume is a significant task. 

 



2. Even more daunting is the problem of key distribution and protection. For every message to be 

sent, a key of equal length is needed by both sender and receiver. Thus, a mammoth key 

distribution problem exists. 

Because of these difficulties, the one-time pad is of limited utility, and is useful primarily for 

low-bandwidth channels requiring very high security. 

 

Transposition Techniques 

All the techniques examined so far involve the substitution of a ciphertext symbol for a plaintext 

symbol. A very different kind of mapping is achieved by performing some sort of permutation on 

the plaintext letters. This technique is referred to as a transposition cipher. The simplest such 

cipher is the rail fence technique, in which the plaintext is written down as a sequence of 

diagonals and then read off as a sequence of rows. For example, to encipher the message "meet 

me after the toga party" with a rail fence of depth 2, we write the following: 

 

m e m a t r h t g p r y 

e t e f e t e o a a t 

The encrypted message is 

MEMATRHTGPRYETEFETEOAAT 

This sort of thing would be trivial to cryptanalyze. A more complex scheme is to write the 

message in a rectangle, row by row, and read the message off, column by column, but permute 

the order of the columns. The order of the columns then becomes the key to the algorithm. For 

example, 

Key: 4 3 1 2 5 6 7 

Plaintext: a t t a c k p 

o s t p o n e 

d u n t i l t 

w o a m x y z 

Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ 

A pure transposition cipher is easily recognized because it has the same letter frequencies as the 

original plaintext. For the type of columnar transposition just shown, cryptanalysis is fairly 

straightforward and involves laying out the ciphertext in a matrix and playing around with 



column positions. Digram and trigram frequency tables can be useful. The transposition cipher 

can be made significantly more secure by performing more than one stage of transposition. The 

result is a more complex permutation that is not easily reconstructed. Thus, if the foregoing 

message is reencrypted using the same algorithm, 

Key: 4 3 1 2 5 6 7 

Input: t t n a a p t 

m t s u o a o 

d w c o i x k 

n l y p e t z 

Output: NSCYAUOPTTWLTMDNAOIEPAXTTOKZ 

To visualize the result of this double transposition, designate the letters in the original plaintext 

message by the numbers designating their position. Thus, with 28 letters in the message, the 

original sequence of letters is 

01 02 03 04 05 06 07 08 09 10 11 12 13 14 

15 16 17 18 19 20 21 22 23 24 25 26 27 28 

After the first transposition we have 

03 10 17 24 04 11 18 25 02 09 16 23 01 08 

15 22 05 12 19 26 06 13 20 27 07 14 21 28 

which has a somewhat regular structure. But after the second transposition, we have 

17 09 05 27 24 16 12 07 10 02 22 20 03 25 

15 13 04 23 19 14 11 01 26 21 18 08 06 28 

This is a much less structured permutation and is much more difficult to cryptanalyze. 

Rotor Machines 

The example just given suggests that multiple stages of encryption can produce an algorithm that 

is significantly more difficult to cryptanalyze. This is as true of substitution ciphers as it is of 

transposition ciphers. Before the introduction of DES, the most important application of the 

principle of multiple stages of encryption was a class of systems known as rotor machines. 

The basic principle of the rotor machine is illustrated in Figure 2.7. The machine consists of a set 

of independently rotating cylinders through which electrical pulses can flow. Each cylinder has 

26 input pins and 26 output pins, with internal wiring that connects each input pin to a unique 

output pin. For simplicity, only three of the internal connections in each cylinder are shown. 



Figure 2.7. Three-Rotor Machine with Wiring Represented by Numbered Contacts 

If we associate each input and output pin with a letter of the alphabet, then a single cylinder 

defines a monoalphabetic substitution. For example, in Figure 2.7, if an operator depresses the 

key for the letter A, an electric signal is applied to the first pin of the first cylinder and flows 

through the internal connection to the twenty-fifth output pin. Consider a machine with a single 

cylinder. After each input key is depressed, the cylinder rotates one position, so that the internal 

connections are shifted accordingly. Thus, a different monoalphabetic substitution cipher is 

defined. After 26 letters of plaintext, the cylinder would be back to the initial position. Thus, we 

have a polyalphabetic substitution algorithm with a period of 26. A single-cylinder system is 

trivial and does not present a formidable cryptanalytic task. The power of the rotor machine is in 

the use of multiple cylinders, in which the output pins of one cylinder are connected to the input 

pins of the next. Figure 2.7 shows a three-cylinder system. The left half of the figure shows a 

position in which the input from the operator to the first pin (plaintext letter a) is routed through 

the three cylinders to appear at the output of the second pin (ciphertext letter B). 



With multiple cylinders, the one closest to the operator input rotates one pin position with each 

keystroke. The right half of Figure 2.7 shows the system's configuration after a single keystroke. 

For every complete rotation of the inner cylinder, the middle cylinder rotates one pin position. 

Finally, for every complete rotation of the middle cylinder, the outer cylinder rotates one pin 

position. This is the same type of operation seen with an odometer. The result is that there are 26 

x 26 x 26 = 17,576 different substitution alphabets used before the system repeats. The addition 

of fourth and fifth rotors results in periods of 456,976 and 11,881,376 letters, respectively. As 

David Kahn eloquently put it, referring to a five-rotor machine [KAHN96, page 413]: 

A period of that length thwarts any practical possibility of a straightforward solution on the basis 

of letter frequency. This general solution would need about 50 letters per cipher alphabet, 

meaning that all five rotors would have to go through their combined cycle 50 times. The 

ciphertext would have to be as long as all the speeches made on the floor of the Senate and the 

House of Representatives in three successive sessions of Congress. No cryptanalyst is likely to 

bag that kind of trophy in his lifetime; even diplomats, who can be as verbose as politicians, 

rarely scale those heights of loquacity. 

Steganography 

We conclude with a discussion of a technique that is, strictly speaking, not encryption, namely, 

steganography. A plaintext message may be hidden in one of two ways. The methods of 

steganography conceal the existence of the message, whereas the methods of cryptography 

render the message unintelligible to outsiders by various transformations of the text. 

Steganography was an obsolete word that was revived by David Kahn. A simple form of 

steganography, but one that is time-consuming to construct, is one in which an arrangement of 

words or letters within an apparently innocuous text spells out the real message. For example, the 

sequence of first letters of each word of the overall message spells out the hidden message.  

 

Various other techniques have been used historically; some examples are the following  

Character marking: Selected letters of printed or typewritten text are overwritten in pencil. The 

marks are ordinarily not visible unless the paper is held at an angle to bright light. 

Invisible ink: A number of substances can be used for writing but leave no visible trace until 

heat or some chemical is applied to the paper. 



Pin punctures: Small pin punctures on selected letters are ordinarily not visible unless the paper 

is held up in front of a light. 

Typewriter correction ribbon: Used between lines typed with a black ribbon, the results of 

typing with the correction tape are visible only under a strong light. 

Although these techniques may seem archaic, they have contemporary equivalents. [WAYN93] 

proposes hiding a message by using the least significant bits of frames on a CD. For example, the 

Kodak Photo CD format's maximum resolution is 2048 by 3072 pixels, with each pixel 

containing 24 bits of RGB color information. The least significant bit of each 24-bit pixel can be 

changed without greatly affecting the quality of the image. The result is that you can hide a 2.3-

megabyte message in a single digital snapshot. There are now a number of software packages 

available that take this type of approach to steganography. Steganography has a number of 

drawbacks when compared to encryption. It requires a lot of overhead to hide a relatively few 

bits of information, although using some scheme like that proposed in the preceding paragraph 

may make it more effective. Also, once the system is discovered, it becomes virtually worthless. 

This problem, too, can be overcome if the insertion method depends on some sort of key (e.g., 

see Problem 2.11). Alternatively, a message can be first encrypted and then hidden using 

steganography. The advantage of steganography is that it can be employed by parties who have 

something to lose should the fact of their secret communication (not necessarily the content) be 

discovered. Encryption flags traffic as important or secret or may identify the sender or receiver 

as someone with something to hide. 

 

Block Ciphers and the Data Encryption Standard 

Block Cipher Principles 

Most symmetric block encryption algorithms in current use are based on a structure referred to as 

a Feistel block cipher. For that reason, it is important to examine the design principles of the 

Feistel cipher. We begin with a comparison of stream ciphers and block ciphers. Then we discuss 

the motivation for the Feistel block cipher structure. Finally, we discuss some of its implications. 

 

 

 

 



Stream Ciphers and Block Ciphers 

A stream cipher is one that encrypts a digital data stream one bit or one byte at a time. 

Examples of classical stream ciphers are the autokeyed Vigenère cipher and the Vernam cipher. 

A block cipher is one in which a block of plaintext is treated as a whole and used to 

produce a ciphertext block of equal length. Typically, a block size of 64 or 128 bits is used. 

Using some of the modes of operation, a block cipher can be used to achieve the same effect as a 

stream cipher. Far more effort has gone into analyzing block ciphers. In general, they seem 

applicable to a broader range of applications than stream ciphers. The vast majority of network-

based symmetric cryptographic applications make use of block ciphers.  

The Feistel Cipher 

Feistel proposed that we can approximate the ideal block cipher by utilizing the concept of a 

product cipher, which is the execution of two or more simple ciphers in sequence in such a way 

that the final result or product is cryptographically stronger than any of the component ciphers. 

The essence of the approach is to develop a block cipher with a key length of k bits and a block 

length of n bits, allowing a total of    possible transformations, rather than the   ! 

transformations available with the ideal block cipher. In particular, Feistel proposed the use of a 

cipher that alternates substitutions and permutations. In fact, this is a practical application a 

proposal by Claude Shannon to develop a product cipher that alternates confusion and diffusion 

functions. We look next at these concepts of diffusion and confusion and then present the Feistel 

cipher.  

Diffusion and Confusion 

The terms diffusion and confusion were introduced by Claude Shannon to capture the two basic 

building blocks for any cryptographic system.Shannon's concern was to thwart cryptanalysis 

based on statistical analysis. The reasoning is as follows. Assume the attacker has some 

knowledge of the statistical characteristics of the plaintext. For example, in a human-readable 

message in some language, the frequency distribution of the various letters may be known. Or 

there may be words or phrases likely to appear in the message (probable words). If these 

statistics are in any way reflected in the ciphertext, the cryptanalyst may be able to deduce the 

encryption key, or part of the key, or at least a set of keys likely to contain the exact key.  

Other than recourse to ideal systems, Shannon suggests two methods for frustrating statistical 

cryptanalysis: diffusion and confusion. In diffusion, the statistical structure of the plaintext is 



dissipated into long-range statistics of the ciphertext. This is achieved by having each plaintext 

digit affect the value of many ciphertext digits; generally this is equivalent to having each 

ciphertext digit be affected by many plaintext digits. An example of diffusion is to encrypt a 

message M = m1, m2, m3,... of characters with an averaging operation: adding k successive 

letters to get a ciphertext letter yn. One can show that the statistical structure of the plaintext has 

been dissipated. Thus, the letter frequencies in the ciphertext will be more nearly equal than in 

the plaintext; the digram frequencies will also be more nearly equal, and so on. In a binary block 

cipher, diffusion can be achieved by repeatedly performing some permutation on the data 

followed by applying a function to that permutation; the effect is that bits from different 

positions in the original plaintext contribute to a single bit of cipher text. 

 

 

adding k successive letters to get a ciphertext letter yn. One can show that the statistical structure 

of the plaintext has been dissipated. 

Thus, the letter frequencies in the ciphertext will be more nearly equal than in the plaintext; the 

digram frequencies will also be more nearly equal, and so on. In a binary block cipher, diffusion 

can be achieved by repeatedly performing some permutation on the data followed by applying a 

function to that permutation; the effect is that bits from different positions in the original 

plaintext contribute to a single bit of cipher text Every block cipher involves a transformation of 

a block of plaintext into a block of ciphertext, where the transformation depends on the key. The 

mechanism of diffusion seeks to make the statistical relationship between the plaintext and 

ciphertext as complex as possible in order to thwart attempts to deduce the key. On the other 

hand, confusion seeks to make the relationship between the statistics of the ciphertext and the 

value of the encryption key as complex as possible, again to thwart attempts to discover the key. 

Thus, even if the attacker can get some handle on the statistics of the ciphertext, the way in 

which the key was used to produce that ciphertext is so complex as to make it difficult to deduce 

the key. This is achieved by the use of a complex substitution algorithm. In contrast, a simple 

linear substitution function would add little confusion. 

 



Feistel Cipher Structure 

Figure 3.2 depicts the structure proposed by Feistel. The inputs to the encryption algorithm are a 

plaintext block of length 2w bits and a key K. The plaintext block is divided into two halves, L0 

and R0. The two halves of the data pass through n rounds of processing and then combine to 

produce the ciphertext block. Each round i has as inputs Li-1 and Ri-1, derived from the previous 

round, as well as a subkey Ki, derived from the overall K. In general, the subkeys Ki are different 

from K and from each other. 

 

 

 

 

 

 

 

 

 



 

  

Figure 3.2. Classical Feistel Network 



The exact realization of a Feistel network depends on the choice of the following parameters and 

design features: 

Block size: Larger block sizes mean greater security (all other things being equal) but reduced 

encryption/decryption speed for a given algorithm. The greater security is achieved by greater 

diffusion Traditionally, a block size of 64 bits has been considered a reasonable tradeoff and was 

nearly universal in block cipher design. However, the new AES uses a 128-bit block size. 

Key size: Larger key size means greater security but may decrease encryption/decryption speed. 

The greater security is achieved by greater resistance to brute-force attacks and greater 

confusion. Key sizes of 64 bits or less are now widely considered to be inadequate, and 128 bits 

has become a common size. 

Number of rounds: The essence of the Feistel cipher is that a single round offers inadequate 

security but that multiple rounds offer increasing security. A typical size is 16 rounds. 

Subkey generation algorithm: Greater complexity in this algorithm should lead to greater 

difficulty of cryptanalysis. 

Round function: Again, greater complexity generally means greater resistance to cryptanalysis. 

There are two other considerations in the design of a Feistel cipher: 

Fast software encryption/decryption: In many cases, encryption is embedded in applications or 

utility functions in such a way as to preclude a hardware implementation. Accordingly, the speed 

of execution of the algorithm becomes a concern. 

Ease of analysis: Although we would like to make our algorithm as difficult as possible to 

cryptanalyze, there is great benefit in making the algorithm easy to analyze. That is, if the 

algorithm can be concisely and clearly explained, it is easier to analyze that algorithm for 

cryptanalytic vulnerabilities and therefore develop a higher level of assurance as to its strength. 

DES, for example, does not have an easily analyzed functionality. 

Feistel Decryption Algorithm 

The process of decryption with a Feistel cipher is essentially the same as the encryption process. 

The rule is as follows: Use the cipher text as input to the algorithm, but use the subkeys Ki in 

reverse order. That is, use Kn in the first round, Kn-1 in the second round, and so on until K1 is 

used in the last round. This is a nice feature because it means we need not implement two 

different algorithms, one for encryption and one for decryption. To see that the same algorithm 

with a reversed key order produces the correct result, consider Figure 3.3, which shows the 



encryption process going down the left-hand side and the decryption process going up the right-

hand side for a 16-round algorithm (the result would be the same for any number of rounds). For 

clarity, we use the notation LEi and REi for data traveling through the encryption algorithm and 

LDi and RDi for data traveling through the decryption algorithm. The diagram indicates that, at 

every round, the intermediate value of the decryption process is equal to the corresponding value 

of the encryption process with the two halves of the value swapped. To put this another way, let 

the output of the ith encryption round be LEi||REi (Li concatenated with Ri). Then the 

corresponding input to the (16i)th decryption round is REi||LEi or, equivalently, RD16-i||LD16-i. 

 

 

Figure 3.3. Feistel Encryption and Decryption 

 



 
 

After the last iteration of the encryption process, 

the two halves of the output are swapped, so that the ciphertext is RE16||LE16. The output of that 

round is the ciphertext. Now take that ciphertext and use it as input to the same algorithm. The 

input to the first round is RE16||LE16, which is equal to the 32-bit swap of the output of the 

sixteenth round of the encryption process. 



Now we would like to show that the output of the first round of the decryption process is equal to 

a 32-bit swap of the input to the sixteenth round of the encryption process. First, consider the 

encryption process. We see that 

LE16 = RE15 

RE16 = LE15 x F(RE15, K16) 

On the decryption side, 

LD1 = RD0 = LE16 = RE15 

RD1 = LD0 x F(RD0, K16) 

= RE16 x F(RE15, K16) 

= [LE15 x F(RE15, K16)] x F(RE15, K16) 

The XOR has the following properties: 

[A x B] x C = A x [B x C] 

D x D = 0 

E x 0 = E 

Thus, we have LD1 = RE15 and RD1 = LE15. Therefore, the output of the first round of the 

decryption process is LE15||RE15, which is the 32-bit swap of the input to the sixteenth round of 

the encryption. This correspondence holds all the way through the 16 iterations, as is easily 

shown. We can cast this process in general terms. For the ith iteration of the encryption 

algorithm, 

LEi = REi-1 

REi =LEi-1 x F(REi-1, Ki) 

Rearranging terms, 

REi-1 = LEi 

LEi-1 = REi x F(REi-1, Ki2 = REi x F(LEi, Ki) 

The Data Encryption Standard 

The most widely used encryption scheme is based on the Data Encryption Standard (DES) 

adopted in 1977 by the National Bureau of Standards, now the National Institute of Standards 

and Technology (NIST), as Federal Information Processing Standard 46 (FIPS PUB 46). The 

algorithm itself is referred to as the Data Encryption Algorithm (DEA). 



For DES, data are encrypted in 64-bit blocks using a 56-bit key. The algorithm transforms 64-bit 

input in a series of steps into a 64-bit output. The same steps, with the same key, are used to 

reverse the encryption. 

DES Encryption 

The overall scheme for DES encryption is illustrated in Figure 3.4. As with any encryption 

scheme, there are two inputs to the encryption function: the plaintext to be encrypted and the 

key. In this case, the plaintext must be 64 bits in length and the key is 56 bits in length. 

Looking at the left-hand side of the figure, we can see that the processing of the plaintext 

proceeds in three phases. First, the 64-bit plaintext passes through an initial permutation (IP) that 

rearranges the bits to produce the permuted input. This is followed by a phase consisting of 16 

rounds of the same function, which involves both permutation and substitution functions. The 

output of the last (sixteenth) round consists of 64 bits that are a function of the input plaintext 

and the key. The left and right halves of the output are swapped to produce the preoutput. 

Finally, the preoutput is passed through a permutation (IP-1) that is the inverse of the initial 

permutation function, to produce the 64-bit ciphertext. With the exception of the initial and final 

permutations, DES has the exact structure of a Feistel cipher, as shown in Figure 3.2. 



Figure 3.4. General Depiction of DES Encryption Algorithm 

 

 

 



Details of Single Round 

Figure 3.5 shows the internal structure of a single round. Again, begin by focusing on the left-

hand side of the diagram. The left and right halves of each 64-bit intermediate value are treated 

as separate 32-bit quantities, labeled L (left) and R (right). As in any classic Feistel 

cipher, the overall processing at each round can be summarized in the following formulas: 

Li = Ri-1 

Ri = Li-1 x F(Ri-1, Ki) 

[Page 77] 

Figure 3.5. Single Round of DES Algorithm 

 

The round key Ki is 48 bits. The R input is 32 bits. This R input is first expanded to 48 bits by 

using a table that defines a permutation plus an expansion that involves duplication of 16 of the 

R bits (Table 3.2c). The resulting 48 bits are XORed with Ki. This 48-bit result passes through a 

substitution function that produces a 32-bit output, which is permuted as defined by Table 3.2d. 



The role of the S-boxes in the function F is illustrated in Figure 3.6. The substitution consists of a 

set of eight S-boxes, each of which accepts 6 bits as input and produces 4 bits as output. These 

transformations are defined in Table 3.3, which is interpreted as follows: The first and last bits of 

the input to box Si form a 2-bit binary number to select one of four substitutions defined by the 

four rows in the table for Si. The middle four bits select one of the sixteen columns. The decimal 

value in the cell selected by the row and column is then converted to its 4-bit representation to 

produce the output. For example, in S1 for input 011001, the row is 01 (row 1) and the column is 

1100 (column 12). The value in row 1, column 12 is 9, so the output is 1001. 

Figure 3.6. Calculation of F(R, K) 



 

Table 3.3. Definition of DES S-Boxes 



Key Generation 

we see that a 64-bit key is used as input to the algorithm. The bits of the key are numbered from 

1 through 64; every eighth bit is ignored.The key is first subjected to a permutation governed by 

a table labeled Permuted Choice One. The resulting 56-bit key is then treated as two 28-bit 

quantities, labeledC 0 and D0. At each round, Ci-1 and Di-1 are separately subjected to a circular 

left shift, or rotation, of 1 or 2 bits. These shifted values serve as input to the next round. They 

also serve as input to Permuted Choice Two, which produces a 48-bit output that serves as input 

to the function F(Ri-1, Ki). 

The Strength of DES 

Since its adoption as a federal standard, there have been lingering concerns about the level of 

security provided by DES. These concerns, by and large, fall into two areas: key size and the 

nature of the algorithm. 

The Use of 56-Bit Keys 

With a key length of 56 bits, there are 2 56 possible keys, which is approximately 7.2 x 10 

16Thus, on the face of it, a brute-force attack appears impractical. Assuming that, on average, 

half the key space has to be searched, a single machine performing one DES encryption per 

microsecond would take more than a thousand years (see Table 2.2) to break the cipher. 

however, the assumption of one encryption per microsecond is overly conservative. As far back 

as 1977, Diffie and Hellman postulated that the technology existed to build a parallel machine 

with 1 million encryption devices, each of which could perform one encryption per microsecond 

[DIFF77]. This would bring the average search time down to about 10 hours. The authors 

estimated that the cost would be about $20 million in 1977 dollars. It is important to note that 

there is more to a key-search attack than simply running through all possible keys. Unless known 

plaintext is provided, the analyst must be able to recognize plaintext as plaintext. If the message 

is just plain text in English, then the result pops out easily, although the task of recognizing 

English would have to be automated. If the text message has been compressed before 

encryption, then recognition is more difficult. And if the message is some more general type of 

data, such as a numerical file, and this has been compressed, the problem becomes even more 

difficult to automate. Thus, to supplement the brute-force approach, some degree of knowledge 

about the expected plaintext is needed, and some means of automatically distinguishing plaintext 

from garble is also needed. The EFF approach addresses this issue as well and introduces some 



automated techniques that would be effective in many contexts. Fortunately, there are a number 

of alternatives to DES, the most important of which are AES and triple DES, discussed in 

Chapters 5 and 6, respectively.  

The Nature of the DES Algorithm 

Another concern is the possibility that cryptanalysis is possible by exploiting the characteristics 

of the DES algorithm. The focus of concern has been on the eight substitution tables, or S-boxes, 

that are used in each iteration. Because the design criteria for these boxes, and indeed for the 

entire algorithm, were not made public, there is a suspicion that the boxes were constructed in 

such a way that cryptanalysis is possible for an opponent who knows the weaknesses in the S-

boxes. This assertion is tantalizing, and over the years a number of regularities and unexpected 

behaviors of the S-boxes have been discovered. Despite this, no one has so far succeeded in 

discovering the supposed fatal weaknesses in the S-boxes. 

Timing Attacks 

We discuss timing attacks in more detail in Part Two, as they relate to public-key algorithms. 

However, the issue may also be relevant for symmetric ciphers. In essence, a timing attack is one 

in which information about the key or the plaintext is obtained by observing how long it takes a 

given implementation to perform decryptions on various ciphertexts. A timing attack exploits the 

fact that an encryption or decryption algorithm often takes slightly different amounts of time on 

different inputs on an approach that yields the Hamming weight (number of bits equal to one) of 

the secret key. This is a long way from knowing the actual key, but it is an intriguing first step. 

The authors conclude that DES appears to be fairly resistant to a successful timing attack but 

suggest some avenues to explore. Although this is an interesting line of attack, it so far appears 

unlikely that this technique will ever be successful against DES or more powerful symmetric 

ciphers such as triple DES and AES. 

DES Design Criteria 

The criteria used in the design of DES,focused on the design of the S-boxes and on the P 

function that takes 

the output of the S boxes (Figure 3.6). The criteria for the S-boxes are as follows: 

1. No output bit of any S-box should be too close a linear function of the input bits. Specifically, 

if we select any output bit and any subset of the six input bits, the fraction of inputs for which 



this output bit equals the XOR of these input bits should not be close to 0 or 1, but rather should 

be near 1/2. 

 

2. Each row of an S-box (determined by a fixed value of the leftmost and rightmost input bits) 

should include all 16 possible output bit combinations. 

3. If two inputs to an S-box differ in exactly one bit, the outputs must differ in at least two bits. 

4. If two inputs to an S-box differ in the two middle bits exactly, the outputs must differ in at 

least two bits.  

5. If two inputs to an S-box differ in their first two bits and are identical in their last two bits, the 

two outputs must not be the same. 

6. For any nonzero 6-bit difference between inputs, no more than 8 of the 32 pairs of inputs 

exhibiting that difference may result in the same output difference. 

7. This is a criterion similar to the previous one, but for the case of three S-boxes. Coppersmith 

pointed out that the first criterion in the preceding list was needed because the S-boxes are the 

only nonlinear part of DES. 

If the S-boxes were linear (i.e., each output bit is a linear combination of the input bits), the 

entire algorithm would be linear and easily broken. We have seen this phenomenon with the Hill 

cipher, which is linear. The remaining criteria were primarily aimed at thwarting differential 

cryptanalysis and at providing good confusion properties. The criteria for the permutation P are 

as follows: 

1. The four output bits from each S-box at round i are distributed so that two of them affect 

(provide input for) "middle bits" of round (i + 1) and the other two affect end bits. The two 

middle bits of input to an S-box are not shared with adjacent S-boxes. The end bits are the two 

left-hand bits and the two right-hand bits, which are shared with adjacent S-boxes. 

2. The four output bits from each S-box affect six different S-boxes on the next round, and no 

two affect the same S-box. 

3. For two S-boxes j, k, if an output bit from Sj affects a middle bit of Sk on the next round, then 

an output bit from Sk cannot affect a middle bit of Sj. This implies that for j = k, an output bit 

from Sj must not affect a middle bit of Sj. 

These criteria are intended to increase the diffusion of the algorithm. 

 



Number of Rounds 

The cryptographic strength of a Feistel cipher derives from three aspects of the design: the 

number of rounds, the function F, and the key schedule algorithm. Let us look first at the choice 

of the number of rounds. The greater the number of rounds, the more difficult it is to perform 

cryptanalysis, even for a relatively weak F. In general, the criterion should be that the number of 

rounds is chosen so that known cryptanalytic efforts require greater effort than a simple brute-

force key search attack. This criterion was certainly used in the design of DES. Schneier 

observes that for 16-round DES, a differential cryptanalysis attack is slightly less efficient than 

brute force: the differential cryptanalysis attack requires perations,whereasbrute force requires 2^ 

55. If DES had 15 or fewer rounds, differential cryptanalysis would require less effort than brute-

force key search. 

Design of Function F 

The heart of a Feistel block cipher is the function F. As we have seen, in DES, this function 

relies on the use of S-boxes. This is also the case for most other symmetric block ciphers, as we 

shall see in Chapter 4. However, we can make some general comments about the criteria for 

designing F. After that, we look specifically at S-box design. 

Design Criteria for F 

The function F provides the element of confusion in a Feistel cipher. Thus, it must be difficult to 

"unscramble" the substitution performed by F. One obvious criterion is that F be nonlinear, as we 

discussed previously. The more nonlinear F, the more difficult any type of cryptanalysis will be. 

There are several measures of nonlinearity, which are beyond the scope of this book. In rough 

terms, the more difficult it is to approximate F by a set of linear equations, the more nonlinear F 

is. 

S-Box Design 

One of the most intense areas of research in the field of symmetric block ciphers is that of S-box 

design. The papers are almost too numerous to count. Here we mention some general principles. 

In essence, we would like any change to the input vector to an S-box to result in random-looking 

changes to the output. The relationship should be nonlinear and difficult to approximate with 

linear functions. Obvious characteristic of the S-box is its size. An n x m S-box has n input bits 

and m output bits. DES has 6 x 4 S-boxes. Blowfish, has 8 x 32 S-boxes. Larger S-boxes, by and 



large, are more resistant to differential and linear cryptanalysis. On the other hand, the larger the 

dimension n , the (exponentially) larger the lookup table. Thus, for practical reasons, a limit on f 

Equal to about 8 to 10 is usually imposed. Another practical consideration is that the larger the S-

box, the more difficult it is to design it properly. S-boxes are typically organized in a different 

manner than used in DES. An n x m S-box typically consists of 2n rows of m bits each. The n 

bits of input select one of the rows of the S-box, and the m bits in that row are the output. For 

example, in an 8 x 32 S-box, if the input is 00001001, the output consists of the 32 bits in row 9 

(the first row is labeled row 0). 

 

 

Differential and Linear Cryptanalysis 
For most of its life, the prime concern with DES has been its vulnerability to brute-force attack 

because of its relatively short (56 bits) key length. However, there has also been interest in 

finding cryptanalytic attacks on DES. With the increasing popularity of block ciphers with longer 

key lengths, including triple DES, brute-force attacks have become increasingly impractical. 

Thus, there has been increased emphasis on cryptanalytic attacks on DES and other symmetric 

block ciphers. In this section, we provide a brief overview of the two most powerful and 

promising approaches: differential cryptanalysis and linear cryptanalysis. 

 

Differential Cryptanalysis 

One of the most significant advances in cryptanalysis in recent years is differential cryptanalysis. 

In this section, we discuss the technique and its applicability to DES. 

 

History 

Although differential cryptanalysis is a powerful tool, it does not do very well against DES. The 

reason, according to a member of the IBM team that designed DES [COPP94], is that differential 

cryptanalysis was known to the team as early as 1974. The need to strengthen DES against 

attacks using differential cryptanalysis played a large part in the design of the S-boxes and the 

permutation P. As evidence of the impact of these changes, consider these comparable results 

reported in [BIHA93]. Differential cryptanalysis of an eight-round LUCIFER algorithm requires 



only 256 chosen plaintexts, whereas an attack on an eight-round version of DES requires 2 14 

chosen plaintexts. 

 

Differential Cryptanalysis Attack 

The differential cryptanalysis attack is complex; [BIHA93] provides a complete description. The 

rationale behind differential cryptanalysis is to observe the behavior of pairs of text blocks 

evolving along each round of the cipher, instead of observing the evolution of a single text block. 

Here, we provide a brief overview so that you can get the flavor of the attack. 

We begin with a change in notation for DES. Consider the original plaintext block m to consist 

of two halves m0,m1. Each round of DES maps the right-hand input into the left-hand output and 

sets the right-hand output to be a function of the left-hand input and the subkey for this round. 

So, at each round, only one new 32-bit block is created. If we label each new block m1 17), then 

the intermediate message halves are related as follows: 

 

mi+1 = mi-1 Xor f(mi, Ki), i = 1, 2, ..., 16 

In differential cryptanalysis, we start with two messages, m and m', with a known XOR 

difference Dm = m Xor m', and consider the difference between the intermediate message halves: 

mi = mi Xor mi' Then we have: 

 

 

 

Now, suppose that many pairs of inputs to f with the same difference yield the same output 

difference if the same subkey is used. To put this more precisely, let us say that X may cause Y 

with probability p, if for a fraction p of the pairs in which the input XOR is X, the output XOR 

equals Y. We want to suppose that there are a number of values ofX that have high probability of 

causing a particular output difference. Therefore, if we know Dmi-1 and Dmi with high 



probability, then we know Dmi+1 with high probability. Furthermore, if a number of such 

differences are determined, it is feasible to determine the subkey used in the function f. 

The overall strategy of differential cryptanalysis is based on these considerations for a single 

round. The procedure is to begin with two plaintext messages m and m' with a given difference 

and trace through a probable pattern of differences after each round to yield a probable 

difference for the ciphertext. Actually, there are two probable patterns of differences for the two 

32-bit halves: (Dm17||m16). Next, we submit m and m' for encryption to determine the actual 

difference under the unknown key and compare the result to the probable difference. If there is a 

match, 

E(K, m)Xor E(K, m') = (Dm17||m16) 

then we suspect that all the probable patterns at all the intermediate rounds are correct. With that 

assumption, we can make some deductions about the key bits. This procedure must be repeated 

many times to determine all the key bits. 

Linear Cryptanalysis 
A more recent development is linear cryptanalysis, described in [MATS93]. This attack is based 

on finding linear approximations to describe the transformations performed in DES. This method 

can find a DES key given 2 43 known plaintexts, as compared to 2 47 chosen plaintexts for 

differential cryptanalysis. Although this is a minor improvement, because it may be easier to 

acquire known plaintext rather than chosen plaintext, it still leaves linear cryptanalysis infeasible 

as an attack on DES. So far, little work has been done by other groups to validate the linear 

cryptanalytic approach. 

 

We now give a brief summary of the principle on which linear cryptanalysis is based. For a 

cipher with n-bit plaintext and ciphertext blocks 

and an m-bit key, let the plaintext block be labeled P[1], ... P[n], the cipher text block C[1], ... 

C[n], and the key K[1], ... K[m]. Then define 

A[i, j, ..., k] = A[i] xor A[j]xor ... A[k] 

The objective of linear cryptanalysis is to find an effective linear equation of the form: 

P[a1, a2, ..., aa] XOR C[b1, b2, ..., bb] = K[g1, g2, ..., gc] 

(where x = 0 or 1; 1 ≤a, b≤ n, 1 ≤c ≤m, and where the a, b and g terms represent fixed, unique bit 

locations) that holds with probability p 0.5. The further p is from 0.5, the more effective the 



equation. Once a proposed relation is determined, the procedure is to compute the results of the 

left-hand side of the preceding equation for a large number of plaintext-ciphertext pairs. If the 

result is 0 more than half the time, assume K[g1, g2, ..., gc] = 0. If it is 1 most of the time, 

assume Kg[1, g2, ..., gc] = 1. This gives us a linear equation on the key bits. Try to get more such 

relations so that we can solve for the key bits. Because we are dealing with linear equations, the 

problem can be approached one round of the cipher at a time, with the results combined. 

 

Block Cipher Design Principles 

Although much progress has been made in designing block ciphers that are cryptographically 

strong, the basic principles have not changed all that much since the work of Feistel and the DES 

design team in the early 1970s. It is useful to begin this discussion by looking at the published 

design criteria used in the DES effort. Then we look at three critical aspects of block cipher 

design: the number of rounds, design of the function F, and key scheduling. 

 

DES Design Criteria 

The criteria used in the design of DES, as reported in [COPP94], focused on the design of the S-

boxes and on the P function that takes the output of the S boxes (Figure 3.6). The criteria for the 

S-boxes are as follows: 

1. No output bit of any S-box should be too close a linear function of the input bits. Specifically, 

if we select any output bit and any subset of the six input bits, the fraction of inputs for which 

this output bit equals the XOR of these input bits should not be close to 0 or 1, but rather should 

be near 1/2. 

2. Each row of an S-box (determined by a fixed value of the leftmost and rightmost input bits) 

should include all 16 possible output bit combinations. 

3. If two inputs to an S-box differ in exactly one bit, the outputs must differ in at least two bits. 

4. If two inputs to an S-box differ in the two middle bits exactly, the outputs must differ in at 

least two bits. 

5. If two inputs to an S-box differ in their first two bits and are identical in their last two bits, the 

two outputs must not be the same. 



6.  For any nonzero 6-bit difference between inputs, no more than 8 of the 32 pairs of inputs 

exhibiting that difference may result in the same output difference. 

 

7. This is a criterion similar to the previous one, but for the case of three S-boxes. 

Coppersmith pointed out that the first criterion in the preceding list was needed because the S-

boxes are the only nonlinear part of DES. 

If the S-boxes were linear (i.e., each output bit is a linear combination of the input bits), the 

entire algorithm would be linear and easily broken. We have seen this phenomenon with the Hill 

cipher, which is linear. The remaining criteria were primarily aimed at thwarting differential 

cryptanalysis and at providing good confusion properties. 

The criteria for the permutation P are as follows: 

1. The four output bits from each S-box at round i are distributed so that two of them affect 

(provide input for) "middle bits" of round (i + 1) and the other two affect end bits. The two 

middle bits of input to an S-box are not shared with adjacent S-boxes. 

The end bits are the two left-hand bits and the two right-hand bits, which are shared with 

adjacent S-boxes. 

2. The four output bits from each S-box affect six different S-boxes on the next round, and no 

two affect the same S-box. 

3. For two S-boxes j, k, if an output bit from Sj affects a middle bit of Sk on the next round, then 

an output bit from Sk cannot affect a middle bit of Sj. This implies that for j = k, an output bit 

from Sj must not affect a middle bit of Sj. 

These criteria are intended to increase the diffusion of the algorithm. 

 

 


