Objective:

To represent and describe information embedded in an image in other forms that are more suitable than the image itself.

Benefits:

- Easier to understand
- Require fewer memory, faster to be processed
- More "ready to be used"

What kind of information we can use?

- Boundary, shape
- Region
- Texture
- Relation between regions

Examples of Chain Codes

Polygon Approximation

Represent an object boundary by a polygon

Object boundary

Minimum perimeter polygon consists of line segments that minimize distances between boundary pixels.

Polygon Approximation:Splitting Techniques

Boundary Segments

Concept: Partitioning an object boundary by using vertices of a convex hull.

Object boundary

Distance-Versus-Angle Signatures

Represent an 2-D object boundary in term of a 1-D function of radial distance with respect to θ

Convex Hull Algorithm

Input : A set of points on a cornea boundary
Output: A set of points on a boundary of a convex hull of a cornea

1. Sort the points by x-coordinate to get a sequence $p_{1}, p_{2}, \ldots, p_{n}$ For the upper side of a convex hull
2. Put the points p_{1} and p_{2} in a list $L_{\text {upper }}$ with p_{1} as the first point
3. For $\mathrm{i}=3$ to n
4. Do append p_{i} to $L_{\text {upper }}$
5. While $L_{\text {upper }}$ contains more than 2 points and the last 3
points in $L_{\text {upper }}$ do not make a right turn
6.

Do delete the middle point of the last 3 points from $L_{\text {uppe }}$

Skeletons

Obtained from thinning or skeletonizing processes

Wodid Dieinal Imane Procesing 2und Edition

Thinning Algorithm

Concept:	1. Do not remove end points
	2. Do not break connectivity
	3. Do not cause excessive erosion

Apply only to contour pixels: pixels " 1 " having at least one of its 8 neighbor pixels valued " 0 "
Notation:

Let

p_{9}	p_{2}	p_{3}		
p_{8}	p_{1}	p_{4}		
p_{7}	p_{6}	p_{5}	\quad	Neighborhood
:---				
arrangement				
for the thinning				
algorithm				

Example
Let $N\left(p_{1}\right)=p_{2}+p_{3}+\ldots+p_{8}+p_{9}$
$\mathrm{T}\left(p_{1}\right)=$ the number of transition $0-1$ in
the ordered sequence p_{2}, p_{3}, \ldots
, p_{8}, p_{9}, p_{2}.

0	0	1
1	p_{1}	0
1	0	1

$N\left(p_{1}\right)=4$
$T\left(p_{1}\right)=3$

Thinning Algorithm (cont.)

Step 1. Mark pixels for deletion if the following conditions are true.
a) $2 \leq N\left(p_{1}\right) \leq 6$
b) $\mathrm{T}\left(p_{1}\right)=1$
c) $p_{2} \cdot p_{4} \cdot p_{6}=0$

d) $p_{4} \cdot p_{6} \cdot p_{8}=0$$\quad$ (Apply to all border pixels) | p_{9} | p_{2} | p_{3} |
| :--- | :--- | :--- |
| p_{8} | p_{1} | p_{4} |
| p_{7} | p_{6} | p_{5} |

Step 2. Delete marked pixels and go to Step 3.
Step 3. Mark pixels for deletion if the following conditions are true.
b) $\mathrm{T}\left(p_{1}\right)=1$
(Apply to all border pixels)
c) $p_{2} \cdot p_{4} \cdot p_{8}=0$
d) $p_{2} \cdot p_{6} \cdot p_{8}=0$

Step 4. Delete marked pixels and repeat Step 1 until no change occurs.

Example: Skeletons Obtained from the Thinning Alg.

FIGURE 11.10
FIGURE leg bon
Human lol
and skeleton of
superimposed.

Shape Number

Shape number of the boundary definition: the first difference of smallest magnitude The order n of the shape number:
the number of digits in the sequence

Chain code: 0321
Difference: 3333
Shape no.: $\begin{array}{lllllllll}3 & 3 & 3 & 3\end{array} 0 \begin{array}{llllll}0 & 3 & 3 & 3 & 3\end{array}$

Example: Shape Number

Example: Fourier Descriptor

Examples of reconstruction from Fourier descriptors

Fourier Descriptor

Fourier descriptor: view a coordinate (x, y) as a complex number ($x=$ real part and $y=$ imaginary part) then apply the Fourier transform to a sequence of boundary points.

$$
\begin{aligned}
& \text { Let } \mathrm{s}(\mathrm{k}) \text { be a coordinate } \\
& \text { of a boundary point } \mathrm{k}:
\end{aligned} \quad s(k)=x(k)+j y(k)
$$

Some properties of Fourier descriptors

Transformation	Boundary	Fourier Descriptor
Identity	$s(k)$	$a(u)$
Rotation	$s_{r}(k)=s(k) e^{j \theta}$	$a_{r}(u)=a(u) e^{j \theta}$
Translation	$s_{t}(k)=s(k)+\Delta_{\mathrm{xy}}$	$a_{t}(u)=a(u)+\Delta_{x y} \delta(u)$
Scaling	$s_{s}(k)=\alpha s(k)$	$a_{s}(u)=\alpha a(u)$
Starting point	$s_{p}(k)=s\left(k-k_{0}\right)$	$a_{p}(u)=a(u) e^{-12 \pi k_{0} u / K}$

Statistical Moments

Definition: the $\mathrm{n}^{\text {th }}$ moment
Example of moment:

$\mu_{n}(r)=\sum_{i=0}^{K-1}\left(r_{i}-m\right)^{n} g\left(r_{i}\right) \quad$	The first moment $=$ mean
The second moment $=$ variance	

where

$$
m=\sum_{i=0}^{K-1} r_{i} g\left(r_{i}\right)
$$

1. Convert a boundary segment into 1 D graph
2. View a 1D graph as a PDF function
3. Compute the $\mathrm{n}^{\text {th }}$ order moment of the graph

