Digital Image Processing Module 5: Image Segmentation

Preprocess
Image acquisition,
Image segmentation and feature extraction
Intermediate process
Image interpretation and recognition

Importance of Image Segmentation

Image segmentation is used to separate an image into constituent parts based on some image attributes. Image segmentation is an important step in image analysis

Benefit

1. Image segmentation reduces huge amount of unnecessary data while retaining only importance data for image analysis
2. Image segmentation converts bitmap data into better structured data which is easier to be interpreted

Spatial Filtering Application to Shape Detection

* One application of spatial filtering is shape detection: finding locations of objects with the desired shape.
* Unlike frequency selective masks that are designed based on the concept of frequency, shape detection masks are derived from the shapes to be detected themselves.
* A mask for shape detection usually contains the shape or a part of the shape to be detected.
* The location that is most correlated to the mask is the location where the highest filter response occurs. The shape is most likely to exist there.

Image Attributes for Image Segmentation

1. Similarity properties of pixels inside the object are used to group pixels into the same set.
2. Discontinuity of pixel properties at the boundary between object and background is used to distinguish between pixels belonging to the object and those of background.

Point Detection

* We can use Laplacian masks	-1 -1	-1	0	-1	0
for point detection.	-1 8	-1	-1	4	-1
* Laplacian masks have the la	-1	-1	0	-1	0
coefficient at the center of the m while neighbor pixels have an opposite sign.					
* This mask will give the high similar shape as the mask such a	se to th ted poi				
* Notice that sum of all coeffici This is due to the need that the r inside a constant intensity area	f the m e of the				

Point Detection

Point detection can be done by applying the thresholding function:

* Similar to point detection, line detection can be performed using the mask the has the shape look similar to a part of a line
* There are several directions that the line in a digital image can be.
* For a simple line detection, 4 directions that are mostly used are Horizontal, +45 degree, vertical and -45 degree.

-1	-1	-1						
2	2	2	-1	-1	2	-1	2	-1
-1	2	-1	-1	2	-1			
-1	-1	-1						
2	-1	-1	-1	2	-1			

Line detection masks

2	-1	-1	
-1	2	-1	
-1	-1	2	
-45°			

Edges

Generally, objects and background have different intensities. Therefore, Edges of the objects are the areas where abrupt intensity changes occur.

Ideal Ramp Edges and its Derivatives

Original image

Smoothed Step Edge and Its Derivatives

Gray level profile

The $1^{\text {st }}$ derivative

The $2^{\text {nd }}$ derivative

Derivative Based Edge Detection

* From the previous slide, we can conclude that:

Local maxima of the absolute of the $1^{\text {st }}$ derivative and Zero crossing of the $2^{\text {nd }}$ derivative occur at edges.

* Therefore, for detecting edges, we can apply zero crossing detection to the $2^{\text {nd }}$ derivative image or thresholding the absolute of the $1^{\text {st }}$ derivative image.
* Nevertheless, derivative operator is very sensitive to noise as we will see in the next slide.

Noisy Edges and Derivatives

Detection of Discontinuities

Gradient Operators

An image gradient is a directional change in the intensity or color in an image.

- First-order derivatives:

- The gradient of an image $f(x, y)$ at location (x, y) is defined as the vector:

$$
\nabla \mathbf{f}=\left[\begin{array}{l}
G_{x} \\
G_{y}
\end{array}\right]=\left[\begin{array}{l}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y}
\end{array}\right]
$$

- The magnitude of this vector: $\nabla f=\operatorname{mag}(\nabla \mathbf{f})=\left[G_{x}^{2}+G_{y}^{2}\right]^{1 / 2}$
- The direction of this vector: $\quad \alpha(x, y)=\tan ^{-1}\left(\frac{G_{x}}{G_{y}}\right)$

Masks for Detecting Diagonal Edges

The mask for detecting -45-degree
 edges is anti-symmetry with respect to the -45-degree lines while the mask for detecting 45-degree edges is anti-symmetry with respect to the 45-degree lines.

路

Detection of Discontinuities
Gradient Operators

Example of Image Gradient

Example of Diagonal Edges

Note: the original image is smoothed by a 5×5 moving average mask first.

- Second-order derivatives: (The Laplacian)
- The Laplacian of an 2D function $f(x, y)$ is defined as

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$

- Two forms in practice:

FIGURE 10.13

Laplacian masks
used to
implement
Eqs. (10.1-14) and
(10.1-15),
respectively

 mask first.

Laplacian Masks

The Laplacian masks are used to estimate the Laplacian image:

$$
\nabla^{2} P=\frac{\partial^{2} P}{\partial x^{2}}+\frac{\partial^{2} P}{\partial y^{2}}
$$

Ideally, the Laplacian mask must be directional invariant: symmetry in all direction (radially symmetry). However, for 3×3 masks, there are Only 8 possible directions. Hence, we can use the following masks:

Detection of Discontinuities Gradient Operators

$$
\begin{aligned}
& \text { - Consider the function: } \\
& \qquad h(r)=-e^{-\frac{r^{2}}{2 \sigma^{2}}} \text { where } r^{2}=x^{2}+y^{2} \\
& \text { and } \sigma \text { : the standard deviation }
\end{aligned}
$$

- The Laplacian of h is

$$
\nabla^{2} h(r)=-\left[\frac{r^{2}-\sigma^{2}}{\sigma^{4}}\right] e^{-\frac{r^{2}}{2 \sigma^{2}}} \quad \begin{gathered}
\text { The Laplacian of a } \\
\text { Gaussian (LoG) }
\end{gathered}
$$

- The Laplacian of a Gaussian sometimes is called the Mexican hat function. It also can be computed by smoothing the image with the Gaussian smoothing mask, followed by application of the Laplacian mask.

Example of Laplacian Image

Thresholding The Role of Illumination

Laplacian Masks

For a large scale Laplacian mask, we can use a Laplacian of Gaussian (LOG) as a mask:

Thresholding

- Assumption: the range of intensity levels covered by objects of interest is different from the background.

ab Single threshold Multiple threshold

FIGURE 10.26 (a) Gray-level histograms that can be partitioned by (a) a single threshold, and (b) multiple thresholds

Nonuniform IIlumination Problem

Nonuniform Illumination and Global Thresholding

Global thresholding of nonuniform illumination image can cause huge errors!

Nonuniform illumination
Global thresholding result

How to solve this problem?

Nonuniform IIlumination and Local Thresholding

Local thresholding:

1. Divide an image into subimages.
2. Threshold each subimage independently
2.1 Compute histogram of each subimage and select a suitable threshold value for each subimage
2.2 threshold each subimage using a threshold value in 2.1
2.3 Combine all local thresholding results

16 subimages
Result of local thresholding

Thresholding
Basic Adaptive Thresholding

FIGURE 10.31 (a) Properly and improperly segmented subimages from Fig. 10.30. (b)-(c) Correspondin histograms. (d) Further subdivision of the improperly segmented subimage. (c) Histogram of small subimage at top, left. (f) Result of adaptively segmenting (d).

Histogram of Subimages and Local Thresholding

Optimum Thresholding

Error due to background pixels classified as object pixels is :

$$
p_{1}(z)=\text { PDF of object pixels }
$$ $p_{1}(z)=$ PDF of object pixels

$p_{2}(z)=$ PDF of background pixels

Error due to object pixels classified as background pixels is: $E_{2}(T)=\int_{T}^{\infty} p_{1}(z) d z$
Total error $=E(T)=P_{2} E_{1}(T)+P_{1} E_{2}(T)$
$P_{1}=$ Probability of occurrence of object pixels
$\mathrm{P}_{2}=$ Probability of occurrence of background pixels
Mogst rom Ratarac C Gomanaze mand Rithand E

Thresholding

Thresholds Based on Several Variables
Color image

Thresholding Optimal Global and Adaptive Thresholding

- This method treats pixel values as probability density functions.
- The goal of this method is to minimize the probability of misclassifying pixels as either object or background.
- There are two kinds of error:
- mislabeling an object pixel as background, and
- mislabeling a background pixel as object.

FIGURE 10.32
Gray-level
Gray--ctel
probability
density functions
of two regions in
an image.

a
b
FIGURE 10.37
(a) Original
image. (b) Image
segmented by
segmented by
(Courtesy of IBM
Corporation.)
Use of Boundary Characteristics

Region-Based Segmentation

- Edges and thresholds sometimes do not give good results for segmentation.
- Region-based segmentation is based on the connectivity of similar pixels in a region.
- Each region must be uniform.
- Connectivity of the pixels within the region is very important.
- There are two main approaches to region-based segmentation: region growing and region splitting.

Basic Formulation

a) Every pixel must be in a region
b) Points in a region must be connected.
c) Regions must be disjoint.
d) All pixels in a region satisfy specific properties.
e) Different regions have different properties.

Region growing

- Groups pixels into larger regions.
- Starts with a seed region.
- Grows region by merging neighboring pixels.
- Iterative process
- How to start?
- How to iterate?
- When to stop?

How do we form regions?

- Region Growing
- Region Merging
- Region Splitting
- Split and Merge
- Watershed
- ...

What a computer sees

Region-Based Segmentation Region Growing

- Fig. 10.41 shows the histogram of Fig. 10.40 (a). It is difficult to segment the defects by thresholding methods. (Applying region growing methods are better in this case.)

Figure 10.40(a)

Figure 10.41

Region-Based Segmentation Region Splitting and Merging

- Region splitting is the opposite of region growing.
- First there is a large region (possible the entire image).
- Then a predicate (measurement) is used to determine if the region is uniform.
- If not, then the method requires that the region be split into two regions.
- Then each of these two regions is independently tested by the predicate (measurement).
- This procedure continues until all resulting regions are uniform.

Region-Based Segmentation Region Splitting

- The main problem with region splitting is determining where to split a region.
- One method to divide a region is to use a quadtree structure.
- Quadtree: a tree in which nodes have exactly four descendants.
a b

Region-Based Segmentation Region Splitting and Merging

- The split and merge procedure:
- Split into four disjoint quadrants any region R_{i} for which $P\left(R_{i}\right)=$ FALSE .
- Merge any adjacent regions R_{j} and R_{k} for which $P\left(R_{j} \mathrm{U} R_{k}\right)=$ TRUE. (the quadtree structure may not be preserved)
- Stop when no further merging or splitting is possible.
$a b c$
FIGURE 10.43
(a) Original
image. (b) Result
of split and merge
procedure.
(c) Result of
thresholding (a).

Region merging

- Algorithm
- Divide image into an initial set of regions.
- One region per pixel.
- Define a similarity criteria for merging regions.
- Merge similar regions.
- Repeat previous step until no more merge operations are possible.
- Algorithm
- One initial set that includes the whole image.
Similarity criteria.
- Iteratively split regions into sub-regions.
- Stop when no more splittings are possible.

The Watershed Transform

- Geographical inspiration.
- Shed water over rugged terrain.
- Each lake corresponds to a region.
- Characteristics
- Computationally complex.
- Great flexibility in segmentation.
- Risk of over-segmentation.

The Drainage Analogy

- Two points are in the same region if they drain to the same point.

Courtesy of Dr. Peter Yim at National Institutes of Health, Bethesda, MD

- The concept of watersheds is based on visualizing an image in three dimensions: two spatial coordinates versus gray levels.
- In such a topographic interpretation, we consider three types of points:
- (a) points belonging to a regional minimum
- (b) points at which a drop of water would fall with certainty to a single minimum
- (c) points at which water would be equally likely to fall to more than one such minimum
- The principal objective of segmentation algorithms based on these concepts is to find the watershed lines.

Segmentation by Morphological Watersheds Example

The Immersion Analogy

Segmentation by Morphological Watersheds Example

Segmentation by Morphological Watersheds

c d
FIGURE 10.46
(a) mage of
blobs (b) Image
gradicent.
(c) Watershed
lines
(d) Watershed
lines
superimposed on
original image.
(Couttesy of Dr.
S.Beccher.
CMMEcole des
Mines de Paris)

