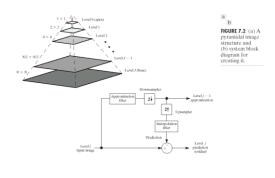
Image Pyramids

Digital Image Processing Module 4: Part 2

Wavelet and Multiresolution Processing



Introduction

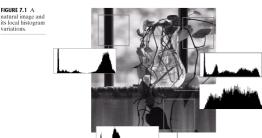
- Unlike Fourier transform, whose basis functions are sinusoids, wavelet transforms are based on small waves, called wavelets, of limited duration.
- · Fourier transform provides only frequency information, but wavelet transform provides time-frequency information.
- Wavelets lead to a multiresolution analysis of signals.
- Multiresolution analysis: representation of a signal (e.g., an images) in more than one resolution/scale.
- · Features that might go undetected at one resolution may be easy to spot in another.

2

3

Image pyramids

- At each level we have an approximation image and a residual image.
- The original image (which is at the base of pyramid) and its P approximation form the approximation pyramid.
- The residual outputs form the residual pyramid.
- · Approximation and residual pyramids are computed in an iterative fashion.
- A P+1 level pyramid is build by executing the operations in the block diagram P times.



Multiresolution

FIGURE 7.1 A

Image pyramids

- During the first iteration, the original 2^Jx2^J image is applied as the input image.
- This produces the level J-1 approximate and level J prediction residual results
- For iterations j=J-1, J-2, ..., J-p+1, the previous iteration's level j-1 approximation output is used as the input.

1

4

Image pyramids

- Each iteration is composed of three sequential steps:
- 1. Compute a reduced resolution approximation of the input image. This is done by filtering the input and downsampling (subsampling) the filtered result by a factor of 2.
 - Filter: neighborhood averaging, Gaussian filtering
 - The quality of the generated approximation is a function of the filter selected

Subband coding

- In subband coding, an image is decomposed into a set of bandlimited components, called subbands.
- Since the bandwidth of the resulting subbands is smaller than that of the original image, the subbands can be downsampled without loss of information.

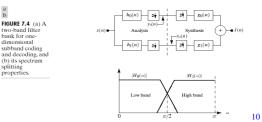
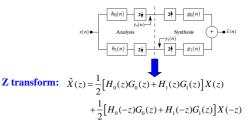


Image pyramids

- 2. Upsample output of the previous step by a factor of 2 and filter the result. This creates a prediction image with the same resolution as the input.
 - By interpolating intensities between the pixels of step 1, the interpolation filter determines how accurately the prediction approximates the input to step 1.
- 3. Compute the difference between the prediction of step 2 and the input to step 1. This difference can be later used to reconstruct progressively the original image

9

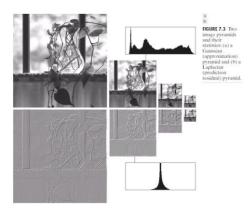
7



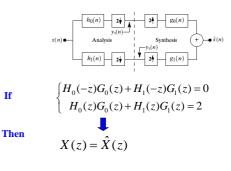
Goal: find H₀, H₁, G₀ and G₁ so that

$$x(n) = \hat{x}(n) \quad \left(i.e. \ X(z) = \hat{X}(z)\right)$$

11



Perfect Reconstruction Filter: Conditions



Perfect Reconstruction Filter Families

Filter	QMF	CQF	Orthonormal	TABLE 7.1 Perfect
$H_0(z)$	$H_0^2(z) - H_0^2(-z) = 2$	$H_0(z)H_0(z^{-1}) + H_0^2(-z)H_0(-z^{-1}) = 2$	$G_0(z^{-1})$	reconstruction filter families.
$H_1(z)$	$H_0(-z)$	$z^{-1}H_0(-z^{-1})$	$G_1(z^{-1})$	
$G_0(z)$	$H_0(z)$	$H_0\!\!\left(z^{-1}\right)$	$egin{array}{llllllllllllllllllllllllllllllllllll$	
$G_1(z)$	$-H_0(-z)$	$zH_0(-z)$	$-z^{-2K+1}G_0(-z^{-1})$	

QMF: quadrature mirror filters

CQF: conjugate mirror filters

13

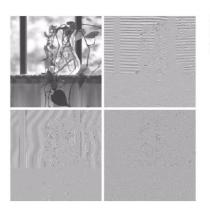


FIGURE 7.7 A four-band split of the vase in Fig. 7.1 using the subband coding system of the 7.5

16

2-D

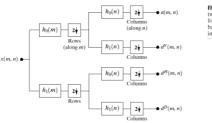


FIGURE 7.5 A two-dimensiona four-band filter bank for subba

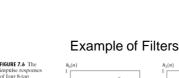
ank for subband mage coding.

14

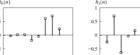
The Haar Transform

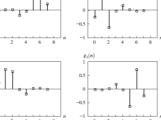
- Haar proposed the Haar Transform in 1910, more than 70 years before the wavelet theory was born.
- Actually, Haar Transform employs the Haar wavelet filters but is expressed in a matrix form.
- Haar wavelet is the oldest and simplest wavelet basis.
- Haar wavelet is the only one wavelet basis, which holds the properties of orthogonal, (anti-)symmetric and compactly supported.

17

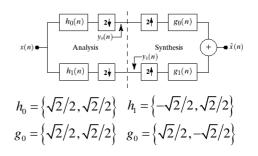


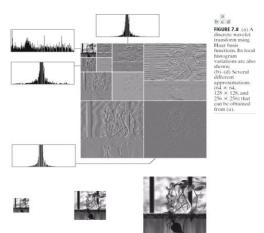
of four 8-tap Daubechies orthonormal filters.





The Haar Wavelet Filters





19

Multiresolution Expansions

Scaling functions

>Integer translations and dyadic scalings of a scaling function $\varphi(x)$

$$\varphi_{j,k}(x) = 2^{j/2} \varphi(2^j x - k)$$

Express f(x) as the combination of $\varphi_{j_0,k}(x)$

$$f(x) = \sum_{k} \alpha_{k} \varphi_{j_{0},k}(x)$$

22

23

 $\varphi_{0,1}(x) = \varphi(x-1)$

 $= \sqrt{2} \varphi(2x - 1)$

$q_{0,0}(x) = \varphi(x)$ **Multiresolution Expansions** $\varphi(x) = \begin{cases} 0 & 0 \le x < 1 \\ 1 & otherwise \end{cases}$ · Series Expansions ≻A function can be expressed as $\varphi_{0,k}(x) = \frac{1}{\sqrt{2}} \varphi_{1,2k}(x)$ $f(x) = \sum_{k} \alpha_{k} \varphi_{k}(x)$ $\varphi_{1,0}(x) = \sqrt{2} \varphi(2x)$ $+\frac{1}{\sqrt{2}}\varphi_{1,2k+1}(x)$ ≻where $\alpha_k = \langle \tilde{\varphi}_k(x), f(x) \rangle = \int \tilde{\varphi}_k^*(x) f(x) dx$ $f(x) = 0.5\varphi_{1,0}(x)$ $+\varphi_{11}(x) - 0.25\varphi_{14}(x)$ $\tilde{\varphi}_k(x)$ — Dual function of $\varphi_k(x)$ * ---- Complex conjugate operation 20

21

 Scaling functions > Dilation equation for scaling function $\varphi(x)$

$$\varphi(x) = \sum_{n} h_{\varphi}(n) \sqrt{2} \varphi(2x - n)$$

 $>h_{\varphi}(n)$ are called scaling function coefficients Example: Haar wavelet, $h_{\varphi}(0) = h_{\varphi}(1) = 1/\sqrt{2}$

$$\varphi(x) = \frac{1}{\sqrt{2}} \left[\sqrt{2}\varphi(2x) \right] + \frac{1}{\sqrt{2}} \left[\sqrt{2}\varphi(2x-1) \right]$$

24

Multiresolution Expansions

Series Expansions

$$\varphi_k(x) = \tilde{\varphi}_k(x)$$
$$\left\langle \varphi_j(x), \varphi_k(x) \right\rangle = \begin{cases} 0 & j \neq k \\ 1 & j = k \end{cases}$$

≻biorthogonal

$$\left\langle \varphi_j(x), \varphi_k(x) \right\rangle = 0 \qquad j \neq k \\ \left\langle \varphi_j(x), \tilde{\varphi}_k(x) \right\rangle = \begin{cases} 0 & j \neq k \\ 1 & j = k \end{cases}$$

Multiresolution Expansions

• Wavelet functions

$$\psi(x) = \sum h_{\psi}(n)\sqrt{2}\varphi(2x-n)$$

 $h_{\psi}(n) \text{ are called wavelet function coefficients}$ Translation and scaling of $\psi'(x)$

$$\psi_{j,k}(x) = 2^{j/2} \psi(2^j x - k)$$

➤ condition for orthogonal wavelets

$$h_{\psi}(n) = (-1)^n h_{\varphi}(1-n)$$

