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Introduction 

• Unlike Fourier transform, whose basis functions are 

sinusoids, wavelet transforms are based on small waves, 

called wavelets, of limited duration. 

• Fourier transform provides only frequency information, 

but wavelet transform provides time-frequency 

information.  

• Wavelets lead to a multiresolution analysis of signals. 

• Multiresolution analysis: representation of a signal (e.g., 

an images) in more than one resolution/scale. 

• Features that might go undetected at one resolution may 

be easy to spot in another. 
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Multiresolution 
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Image Pyramids 
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Image pyramids  

• At each level we have an approximation image and a 

residual image. 

• The original image (which is at the base of pyramid) 

and its P approximation form the approximation 

pyramid. 

• The residual outputs form the residual pyramid. 

• Approximation and residual pyramids are computed 

in an iterative fashion.  

• A P+1 level pyramid is build by executing the 

operations in the block diagram P times. 
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Image pyramids 

• During the first iteration, the original 2Jx2J image is 

applied as the input image. 

• This produces the level J-1 approximate and level J 

prediction residual results 

• For iterations j=J-1, J-2, …, J-p+1, the previous 

iteration’s level j-1 approximation output is used as 

the input.  
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Image pyramids 

• Each iteration is composed of three sequential steps:  

1. Compute a reduced resolution approximation of the 

input image. This is done by filtering the input and 

downsampling (subsampling) the filtered result by a 

factor of 2.  

– Filter: neighborhood averaging, Gaussian 

filtering  

– The quality of the generated approximation is a 

function of the filter selected 
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Image pyramids 

2. Upsample output of the previous step by a factor of 

2 and filter the result. This creates a prediction 

image with the same resolution as the input.  

– By interpolating intensities between the pixels of 

step 1, the interpolation filter determines how 

accurately the prediction approximates the input 

to step 1.  

3. Compute the difference between the prediction of 

step 2 and the input to step 1. This difference can be 

later used to reconstruct progressively the original 

image 
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Subband coding 

• In subband coding, an image is decomposed into a set of 

bandlimited components, called subbands.  

• Since the bandwidth of the resulting subbands is smaller than 

that of the original image, the subbands can be downsampled 

without loss of information.  
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Perfect Reconstruction Filter 
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Perfect Reconstruction Filter: Conditions 

Then 
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Perfect Reconstruction Filter Families 

QMF: quadrature mirror filters 

CQF: conjugate mirror filters 
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2-D  
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Example of Filters 
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The Haar Transform 

• Haar proposed the Haar Transform in 1910, more 

than 70 years before the wavelet theory was born.  

• Actually, Haar Transform employs the Haar wavelet 

filters but is expressed in a matrix form. 

• Haar wavelet is the oldest and simplest wavelet basis. 

• Haar wavelet is the only one wavelet basis, which 

holds the properties of orthogonal, (anti-)symmetric 

and compactly supported. 
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The Haar Wavelet Filters 
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Multiresolution Expansions 

• Series Expansions 

A function can be expressed as 
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Multiresolution Expansions 

• Series Expansions 

Orthonormal basis 
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Multiresolution Expansions 

• Scaling functions 

Integer translations and dyadic scalings of a 

scaling function  
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Multiresolution Expansions 

• Scaling functions 

Dilation equation for scaling function 
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Multiresolution Expansions 

• Wavelet functions 

 
 
 

           are called wavelet function coefficients   

Translation and scaling of     
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