Light
Light is fundamental for color vision
Unless there is a source of light, there is nothing to see!
What do we see?
We do not see objects, but the light that has been
reflected by or transmitted through the objects

Light and EM waves
Light is an electromagnetic wave

If its wavelength is comprised between 400 and 700 nm (visible spectrum), the wave can be detected by the human eye and is called monochromatic light

Preview

Physical properties of light

This distribution may indicate:

1) a dominant wavelength (or frequency) which is the color of the light (hue),
2) brightness (luminance), intensity of the light (value),
3) purity (saturation), which describes the degree of vividness.

Spectrum of White Light

FIGURE 6.1 Color spectrum seen by passing white light through a prism. (Courtesy of the General Electric Co., Lamp Business Division.)

1666 Sir Isaac Newton, 24 year old, discovered white light spectrum.
\qquad

Electromagnetic Spectrum

Visible light wavelength: from around 400 to 700 nm

1. For an achromatic (monochrome) light source, there is only 1 attribute to describe the quality: intensity
2. For a chromatic light source, there are 3 attributes to describe the quality:

Radiance $=$ total amount of energy flow from a light source (Watts)
Luminance $=$ amount of energy received by an observer (lumens)
Brightness $=$ intensity
\qquad

Sensitivity of Cones in the Human Eye

CIE $=$ Commission Internationale de l'Eclairage
(The International Commission on Illumination) \qquad

Primary and Secondary Colors

Primary and Secondary Colors (cont.)

Additive primary colors: RGB use in the case of light sources such as color monitors

RGB add together to get white

Subtractive primary colors: CMY use in the case of pigments in printing devices

White subtracted by CMY to get Black
\qquad

Light and Color

The frequency (or mix of frequencies) of the light determines the color.
The amount of light(sheer quantity of photons) is the intensity.
Three independent quantities are used to describe any particular color. : hue, saturation, and lightness or brightness or intensity.

The hue is determined by the dominant wavelength.(the apparent color of the light)

When we call an object "red," we are referring to its hue. Hue is determined by the dominant wavelength.

Color Characterization

Hue:	dominant color corresponding to a dominant wavelength of mixture light wave
Saturation:	Relative purity or amount of white light mixed with a hue (inversely proportional to amount of white light added)
Brightness:	Intensity

amount of red (X), green (Y) and blue (Z) to form any particular color is called tristimulus.

Light and Color

The saturation of a color ranges from neutral to brilliant. The circle on the right is a more vivid red than the circle on the left although both have the same hue.

The saturation is determined by the excitation purity, and depends on the amount of white light mixed with the hue. A pure hue is fully saturated, i.e. no white light mixed in. Hue and saturation together determine the chromaticity for a given color.

Light and Color

3 Properties of Color
LIGHTNESS

Finally, the intensity is determined by the actual amount of light, with more light corresponding to more intense colors (the total light across all frequencies).

Lightness or brightness refers to the amount of light the color reflects or transmits.

X

Trichromatic coefficients:

$$
\begin{aligned}
& x=\frac{X}{X+Y+Z} \\
& y=\frac{Y}{X+Y+Z} \\
& z=\frac{Z}{X+Y+Z} \\
& x+y+z=1
\end{aligned}
$$

Points on the boundary are fully saturated colors

Color Gamut of Color Monitors and Printing Devices

Color Fundamentals (con't)

- Tri-stimulus values: The amount of Red, Green and Blue needed to form any particular color

Denoted by: X, Y and Z

- Tri-chromatic coefficient:

$$
\begin{array}{cc}
x=\frac{X}{X+Y+Z} & y=\frac{Y}{X+Y+Z} \quad z=\frac{Z}{X+Y+Z} \\
x+y+z=1
\end{array}
$$

Color Models

- The purpose of a color model (also called color space or color system) is to facilitate the specification of colors in some standard, generally accept way.
- RGB (red, green, blue) : monitor, video camera.
- CMY(cyan, magenta, yellow), CMYK (CMY, black) model for color printing.
- and HSI model, which corresponds closely with the way humans describe and interpret color.

RGB (red, green, blue)

The RGB colour space is related to human vision through the tristimulus theory of colour vision.

The RGB is an additive colour model. The primary colours red, green and blue are combined to reproduce other colours.

In the RGB colour space, a colour is represented by a triplet (r, g, b)
r gives the intensity of the red component
g gives the intensity of the green component
b gives the intensity of the blue component

Here we assume that $\mathrm{r}, \mathrm{g}, \mathrm{b}$ are real numbers in the interval $[0,1]$.
You will often see the values of $\mathrm{r}, \mathrm{g}, \mathrm{b}$ as integers in the interval $[0,255]$.

21

RGB Color model

Active displays, such as computer monitors and television sets, emit combinations of red, green and blue light. This is an additive color model

The RGB Color Spaces

Purpose of color models: to facilitate the specification of colors in some standard

RGB color models:

- based on Cartesian coordinate system

RGB Color Cube

RGB Color Model

\qquad

RGB Color Model (cont.)

- Most modern computer monitors can transmit "true color," or 24 -bit color. This means each "channel" (R, G, or B) contains 8 bits per channel that can transmit color.
- Eight bits means the channel can make eight combinations of on or off of the color, per pixel, 256 colors total. You have three channels. How many colors can be generated?
- $256 \times 256 \times 256=16,777,216$ possible colors.

26

Safe RGB Colors

Safe RGB colors: a subset of RGB colors.
There are 216 colors common in most operating systems.

$\frac{a}{a}$
FIGURE 6.10
(a) The 216 safe

RGB colors
(b) All the grays
in the 256 -color
in the 256 -color
$R G B$ system
(grays that ar
part of the safe
color group are
shown
underlined).

Woxd. Digitial Imaze Processing. 2an Edition.

RGB Safe-color Cube

Number System	Color Equivalents					
Hex	00	33	66	99	CC	FF
Decimal	0	51	102	153	204	255

TABLE 6.1
Valid values of
each RGB
component in a

The RGB Cube is divided into 6 intervals on each axis to achieve the total $6^{3}=216$ common colors.

However, for 8 bit color representation, there are the total 256 colors. Therefore, the remaining 40 colors are left to OS.

$\underset{\substack{2 \\ z_{2} \text { and Richard } \\ 22^{1} \text { Edition }}}{ }$

$C M Y$ Color model

- Additive color won't work for printing because we can't begin with black.
- We must begin with a piece of paper, and that's usually white.
- White, as we know, is all colors. So we can't add to all colors. We must subtract.
- Furthermore, an offset printing press can't generate the enormous number of colors available on a computer screen.
- We need to run a piece of paper through the press for each ink.

$C M Y$ Color model

- The press below has four heads, one for each ink in the CMYK system.

$C M Y$ Color model

- Printed color, therefore, is based on the subtractive system.
- While the additive primaries (used to generate all colors) are RGB, beginning with black...
- ...the subtractive primaries are Cyan, Magenta, Yellow and Black (CMYK), and begin with white.
- Cyan=blue-green. Magenta=red-blue. Yellow=red-green.
- Note the relationship between the additive and subtractive primaries.

$C M Y$ Color model

- You can actually project the additive colors to produce the subtractive.

CMY Color model

$\left[\begin{array}{c}C \\ M \\ Y\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]-\left[\begin{array}{l}R \\ G \\ B\end{array}\right]$

$C M Y$ Color model

- Why?
>Pigments absorb light

- Thinking:
$>$ the Color Filters
- Question:
> Yellow + Cyan=?

mes)

CMY Color model

Passive displays, such as color inkjet printers, absorb light instead of emitting it. Combinations of cyan, magenta and yellow inks are used. This is a subtractive color model.

CM 1

CMY cartridges for colour printers.

The CMY and CMYK Color Spaces

The CM Y and CM Y K Color Models

- Cyan, Magenta and Yellow are the secondary colors of light
- Most devices that deposit colored pigments on paper, such as color printers and copiers, require CMY data input.

$$
\left[\begin{array}{c}
C \\
M \\
Y
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]
$$

The conversion from RGB to CMY is given by the formula

$$
\left[\begin{array}{l}
c \\
m \\
y
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
r \\
g \\
b
\end{array}\right]
$$

Example 11.2: The red colour is written in RGB as $(1,0,0)$. In CMY it is written as

$$
\left[\begin{array}{l}
c \\
m \\
y
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
r \\
g \\
b
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

that is, magenta and yellow.

Example 11.3: The magenta is written in CMY as $(0,1,0)$. In RGB it is written as

$$
\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
r \\
g \\
b
\end{array}\right]
$$

giving,

$$
\left[\begin{array}{l}
r \\
g \\
b
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

that is, red and blue.

CM $\backslash \boldsymbol{K}$ Color model

The image on the left was printed with only CMY inks Black inks add contrast and depth to image on the image on the right

CM \backslash K Color model

- Subtractive primaries are based on ink colors of CMYK.
- Black is abbreviated "K" by tradition, perhaps because it is the "key" color.
- In color printing, you need black to make the other colors vibrant and snappy.
- This is why the subtractive process is also called the four-color process, producing color separations, or "seps."
- Colors used are called the process colors.

CM $\backslash \boldsymbol{K}$ Color model

For printing and graphics art industry, CMY is not enough; a fourth primary, K which stands for black, is added.

Conversions between RGB and CMYK are possible, although they require some extra processing.

HSI color model

- Will you describe a color using its R, G, B components?
- Human describe a color by its hue, saturation, and brightness

- Hue	$:$ color attribute
- Saturation	: purity of color (white->0, primary color->1)
- Brightness	$:$ achromatic notion of intensity

HSI Color Model

RGB, CMY models are not good for human interpretation
\(\left.\begin{array}{ll}HSI Color model:

Hue: \& Dominant color

Saturation: \& Relative purity (inversely proportional

to amount of white light added)\end{array}\right\}\)| Color carrying |
| :--- |
| information |

HSI Color Model

- Hue is defined as an angle
- 0 degrees is RED
- 120 degrees is GREEN
- 240 degrees is BLUE
- Saturation is defined as the percentage of distance from the center of the HSI triangle to the pyramid surface.
- Values range from 0 to 1 .
- Intensity is denoted as the distance "up" the axis from black.

Values range from 0 to 1

Hue and Saturation on Color Planes

1. A dot is the plane is an arbitrary color
2. Hue is an angle from a red axis.
3. Saturation is a distance to the point.

Intensity is given by a position on the vertical axis.

HSI Color Model

Intensity is given by a position on the vertical axis.

Example: HSI Components of RGB Cube

Converting Colors from RGB to HSI

$$
\left.\begin{array}{l}
H= \begin{cases}\theta & \text { if } B \leq G \\
360-\theta & \text { if } B>G\end{cases} \\
\theta=\cos ^{-1}\left\{\frac{\frac{1}{2}[(R-G)+(R-B)]}{\left[(R-G)^{2}+(R-B)(G-B)\right]^{1 / 2}}\right\}
\end{array}\right\} \begin{aligned}
& S=1-\frac{3}{R+G+B} \\
& I=\frac{1}{3}(R+G+B)
\end{aligned}
$$

Converting Colors from HSI to RGB

RG sector: $0 \leq H<120$
GB sector: $120 \leq H<240$

$$
\begin{aligned}
& R=I\left[1+\frac{S \cos H}{\cos \left(60^{\circ}-H\right)}\right] \\
& B=I(1-S) \\
& G=1-(R+B)
\end{aligned}
$$

BR sector: $240 \leq H \leq 360$

$$
\begin{aligned}
& H=H-240 \\
& B=I\left[1+\frac{S \cos H}{\cos \left(60^{\circ}-H\right)}\right] \\
& G=I(1-S) \\
& R=1-(G+B)
\end{aligned}
$$

$$
\begin{aligned}
& H=H-120 \\
& R=I(1-S) \\
& G=I\left[1+\frac{S \cos H}{\cos \left(60^{\circ}-H\right)}\right] \\
& B=1-(R+G)
\end{aligned}
$$

Color Image Processing

There are 2 types of color image processes

1. Pseudocolor image process: Assigning colors to gray values based on a specific criterion. Gray scale images to be processed may be a single image or multiple images such as multispectral images
2. Full color image process: The process to manipulate real color images such as color photographs.

Pseudocolor Image Processing

Pseudo color = false color : In some case there is no "color" concept for a gray scale image but we can assign "false" colors to an image.

Why we need to assign colors to gray scale image?
Answer: Human can distinguish different colors better than different shades of gray.

Intensity Slicing or Density Slicing
Formula:

$$
g(x, y)=\left\{\begin{array}{lll}
C_{1} & \text { if } f(x, y) \leq T & C_{1}=\text { Color No. } 1 \\
C_{2} & \text { if } f(x, y)>T & C_{2}=\text { Color No. 2 }
\end{array}\right.
$$

Intensity Slicing Example

Multilevel Intensity Slicing Example....

Gray Level to Color Transformation

> Assigning colors to gray levels based on specific mapping functions

Gray Level to Color Transformation Example

Gray Level to Color Transformation Example

Pseudocolor Coding

Used in the case where there are many monochrome images such as multispectral satellite images.

Color theory

Some general guidelines for choosing color:

- Differences will be emphasized. For example, yellow surrounded by green will tend to appear more yellow; green surrounded by yellow will tend to appear more green. This is the rule of simultaneous contrast.

Pseudocolor Coding Example

Pseudocolor Coding Example

Psuedocolor rendition of Jupiter moon Io

Yellow areas $=$ older sulfur deposits.
Red areas = material ejected from active volcanoes.
\square

A close-up

