Digital Image Processing Module 3 Image Restoration

Unit Outline

- · A model of the image degradation / restoration process
- · Noise models
- · Restoration in the presence of noise only spatial filtering
- · Periodic noise reduction by frequency domain filtering
- · Linear, position-invariant degradations
- · Estimating the degradation function
- · Inverse filtering

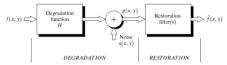
Preview

- · Goal of image restoration
 - Improve an image in some predefined sense
 - Difference with image enhancement?
- · Features
 - Image restoration v.s image enhancement
 - Objective process v.s. subjective process
 - A prior knowledge v.s heuristic process
 - A prior knowledge of the degradation phenomenon is considered.
 - Modeling the degradation and apply the inverse process to recover the original image

2

Concept of Image Restoration

Image restoration is to restore a degraded image back to the original image while image enhancement is to manipulate the image so that it is suitable for a specific application.



Degradation model:

 $g(x, y) = f(x, y) * h(x, y) + \eta(x, y)$

where h(x,y) is a system that causes image distortion and $\eta(x,y)$ is noise.

Preview (cont.)

- Target
 - Degraded digital image
 - Sensor, digitizer, display degradations are less considered
- Spatial domain approach
- Frequency domain approach

Noise models

- · Source of noise
 - Image acquisition (digitization)
 - Image transmission
- · Spatial properties of noise
 - Statistical behavior of the gray-level values of pixels
 - Noise parameters, correlation with the image
- · Frequency properties of noise
 - Fourier spectrum
 - Ex. white noise (a constant Fourier spectrum)

3

Noise Models

Noise cannot be predicted but can be approximately described in statistical way using the probability density function (PDF)

Gaussian noise:

$$p(z) = \frac{1}{2\pi\sigma} e^{-(z-\mu)^2/2\sigma^2}$$

Rayleigh noise

$$p(z) = \begin{cases} \frac{2}{b}(z-a)e^{-(z-a)^2/b} & \text{for } z \ge a\\ 0 & \text{for } z < a \end{cases}$$

Erlang (Gamma) noise

$$p(z) = \begin{cases} \frac{a^{b}z^{b-1}}{(b-1)!}(z-a)e^{-az} & \text{for } z \ge 0\\ 0 & \text{for } z < 0 \end{cases}$$

Noise probability density functions

- · Noises are taken as random variables
- · Random variables
 - Probability density function (PDF)

10

11

Noise Models (cont.)

Exponential noise

 $p(z) = ae^{-az}$

Uniform noise

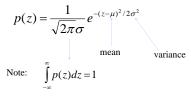
$$p(z) = \begin{cases} \frac{1}{b-a} & \text{for } a \le z \le b \\ 0 & \text{otherwise} \end{cases}$$

Impulse (salt & pepper) noise

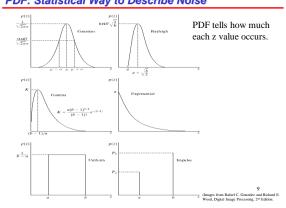
$$p(z) = \begin{cases} P_a & \text{for } z = a \\ P_b & \text{for } z = b \\ 0 & \text{otherwise} \end{cases}$$

Gaussian noise

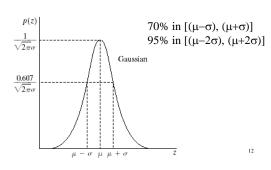
- Math. tractability in spatial and frequency domain
- · Electronic circuit noise and sensor noise



PDF: Statistical Way to Describe Noise



Gaussian noise (PDF)



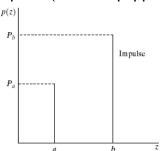
Uniform noise

• Less practical, used for random number generator

$$p(z) = \begin{cases} \frac{1}{b-a} & \text{if } a \le z \le b \\ 0 & \text{otherwise} \end{cases}$$
Mean: $y = \frac{a+b}{a}$

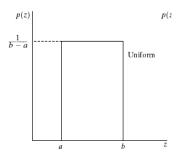
Variance: $\sigma^2 = \frac{(b-a)^2}{12}$

Impulse (salt-and-pepper) nosie PDF

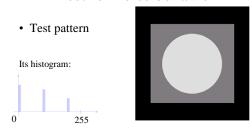


Uniform Noise PDF

13



Test for noise behavior



17

Impulse (salt-and-pepper) nosie

Quick transients, such as faulty switching during imaging

$$p(z) = \begin{cases} P_a & \text{for } z = a \\ P_b & \text{for } z = b \\ 0 & \text{otherwise} \end{cases}$$

If either P_a or P_b is zero, it is called *unipolar*. Otherwise, it is called bipoloar.

•In practical, impulses are usually stronger than image signals. Ex., a=0(black) and b=255(white) in 8-bit image.

Image Degradation with Additive Noise

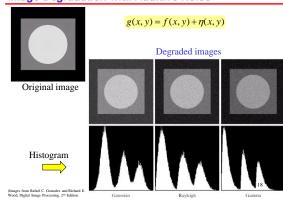
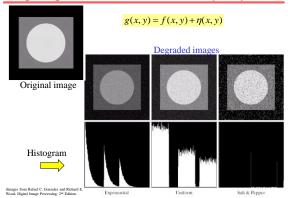


Image Degradation with Additive Noise (cont.)



Estimation of noise parameters

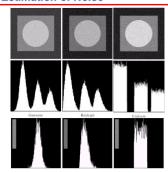
- · Periodic noise
 - Observe the frequency spectrum
- · Random noise with unknown PDFs
 - Case 1: imaging system is available
 - · Capture images of "flat" environment
 - Case 2: noisy images available
 - · Take a strip from constant area
 - · Draw the histogram and observe it
 - · Measure the mean and variance

22

Periodic noise

- Source: electrical or electromechanical interference during image acquisition
- · Characteristics
 - Spatially dependent
 - Periodic easy to observe in frequency domain
- · Processing method
 - Suppressing noise component in frequency domain

Estimation of Noise

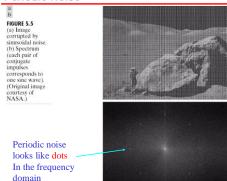


We cannot use the image histogram to estimate noise PDF.

It is better to use the histogram of one area of an image that has constant intensity to estimate noise PDF.

23 (Images from Rafael C. Gonzalez and Richard

Periodic Noise



Restoration in the presence of Noise Only- Spatial Filtering

When only degradation present in an image is noise,

Degradation model:



Spatial filtering is the method of choice in situations when only additive noise is present.

Enhancement and Restoration become almost indistinguishable disciplines in this particular case.

24

Mean Filters (Noise Reduction Spatial Filters)

Arithmetic mean filter or moving average filter

$$\hat{f}(x,y) = \frac{1}{mn} \sum_{(s,t) \in S_{xy}} g(s,t)$$

Geometric mean filter

$$\hat{f}(x, y) = \left(\prod_{(s,t) \in S_{xy}} g(s,t)\right)^{\frac{1}{mm}}$$

mn = size of moving window

Achieves smoothing comparable to arithmetic mean filter, but it tends to lose less image detail in the process.

Contraharmonic Filters: Example

Image

obtained

using a 3x3

contra-

harmonic

mean filter

With Q = 1.5

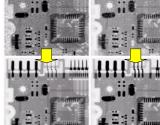
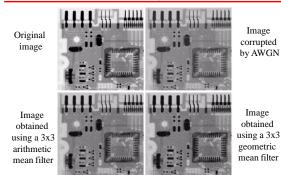


Image corrupted by salt noise with prob. = 0.1

Image obtained using a 3x3 contraharmonic mean filter With Q=-1.5

28
(Images from Rafael C. Gonzalez and Richard E
Wood, Digital Image Processing, 2nd Edition.

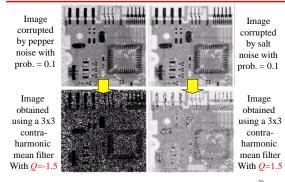
Geometric Mean Filter: Example



AWGN: Additive White Gaussian Noise

26 ages from Rafael C. Gonzalez and Richard E

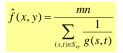
Contraharmonic Filters: Incorrect Use Example



(Images from Rafael C. Gonzalez and Richard Wood, Digital Image Processing, 2nd Edition.

Harmonic and Contraharmonic Filters

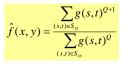
Harmonic mean filter



Works well for salt noise but fails for pepper noise Works well for Gaussian Noise

mn = size of moving window

Contraharmonic mean filter

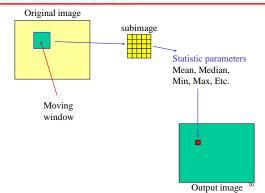


Reduces salt and pepper noise,
Positive *Q* is suitable for
eliminating pepper noise.
Negative *Q* is suitable for
eliminating salt noise.
Cannot do both simultaneously

Q = the filter order

For Q = 0, the filter reduces to an arithmetic mean filter. For Q = -1, the filter reduces to a harmonic mean filter.

Order-Statistic Filters: Revisit



Order-Statistics Filters

Median filter

$$\hat{f}(x, y) = \underset{(s,t) \in S_{--}}{\text{median}} \{g(s,t)\}$$

Max filter

$$\hat{f}(x,y) = \max_{(s,t) \in S_{vv}} \left\{ g(s,t) \right\}$$

Reduce "dark" noise (pepper noise)

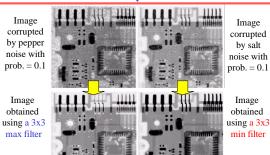
Min filter

$$\hat{f}(x,y) = \min_{(s,t) \in S_{xy}} \{g(s,t)\}$$
 Reduce "bright" noise (salt noise)

Midpoint filter

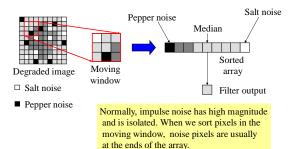
$$\hat{f}(x, y) = \frac{1}{2} \left(\max_{(s,t) \in S_{xy}} \left\{ g(s,t) \right\} + \min_{(s,t) \in S_{xy}} \left\{ g(s,t) \right\} \right)$$

Max and Min Filters: Example



Median Filter: How it works

A median filter is good for removing impulse, isolated noise



Therefore, it's rare that the noise pixel will be a median value32

Alpha-trimmed Mean Filter

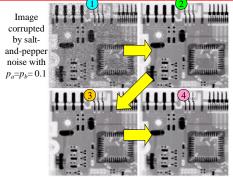
Formula:

$$\hat{f}(x,y) = \frac{1}{mn - d} \sum_{(s,t) \in S_{xy}} g_r(s,t)$$

where $g_r(s,t)$ represent the remaining mn-d pixels after removing the d/2 highest and d/2 lowest values of g(s,t).

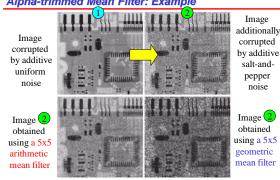
This filter is useful in situations involving multiple types of noise such as a combination of salt-and-pepper and Gaussian noise.

Median Filter: Example

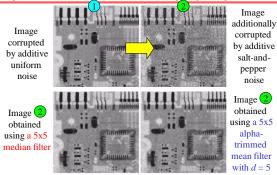


Images obtained using a 3x3 median filter market C. Gor

Alpha-trimmed Mean Filter: Example



Alpha-trimmed Mean Filter: Example (cont.)



Adaptive Filter

General concept:

- -Filter behavior depends on statistical characteristics of local areas inside mxn moving window
- More complex but superior performance compared with "fixed"

Statistical characteristics:

Local mean: $m_L = \frac{1}{mn} \sum_{(s,t) \in S_{xy}} g(s,t)$ Noise variance:

$$\sigma_L^2 = \frac{1}{mn} \sum_{(s,t) \in S_{xy}} (g(s,t) - m_L)^2$$

Alpha-trimmed Mean Filter: Example (cont.)

Image obtained using a 5x5 arithmetic mean filter

Image

obtained

using a 5x5

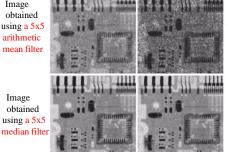


Image obtained using a 5x5 geometric mean filter

Image obtained using a 5x5 alphatrimmed mean filter with d = 5

Adaptive, Local Noise Reduction Filter

Purpose: want to preserve edges

Concept:

- 1. If σ_n^2 is zero, \rightarrow No noise the filter should return g(x,y) because g(x,y) = f(x,y)
- 2. If σ_L^2 is high relative to σ_n^2 , \rightarrow Edges (should be preserved), the filter should return the value close to g(x,y)
- 3. If $\sigma_L^2 = \sigma_n^2$, \rightarrow Areas inside objects the filter should return the arithmetic mean value m_L

Formula:

$$\hat{f}(x,y) = g(x,y) - \frac{\sigma_{\eta}^2}{\sigma_L^2} (g(x,y) - m_L)$$

Adaptive Filters

- · The filters discussed so far are applied to an entire image without any regard for how image characteristics vary from one point to another
- · The behaviour of adaptive filters changes depending on the characteristics of the image inside the filter region

Adaptive Noise Reduction Filter: Example

Image corrupted by additive Gaussian noise with zero mean and $\sigma^2=1000$

Image obtained using a 7x7 geometric mean filter

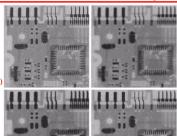


Image obtained using a 7x7 arithmetic mean filter

Image obtained using a 7x7 adaptive noise reduction filter

Adaptive Median Filtering

- The median filter performs relatively well on impulse noise as long as the spatial density of the impulse noise is not large
- The adaptive median filter can handle much more spatially dense impulse noise, and also performs some smoothing for nonimpulse noise
- The key insight in the adaptive median filter is that the filter size changes depending on the characteristics of the image

43

Adaptive Median Filter: How it works

```
Level A: A1= z_{\text{median}} - z_{\text{min}}
                                                                 Determine
            A2 = z_{\text{median}} - z_{\text{max}}
                                                                 whether z_{\text{median}}
                                                                 is an impulse or not
            If A1 > 0 and A2 < 0, goto level B
                   Else → Window is not big enough
                             increase window size
                             If window size \leq S_{\text{max}} repeat level A
                                       Else return z_{xy}
Level B: \rightarrow z_{median} is not an impulse
                                          Determine
            \mathbf{B1} = z_{\mathrm{xy}} - z_{\mathrm{min}}
                                              whether z_{yy}
                                              is an impulse or not
            B2 = z_{xy} - z_{max}
            If B1 > 0 and B2 < 0, \rightarrow z_{xy} is not an impulse
                    return z_{xy} \rightarrow to preserve original details
                   return z_{\text{median}} \rightarrow to remove impulse
```

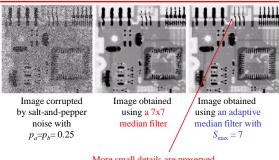
Adaptive Median Filtering (cont...)

The key to understanding the algorithm is to remember that the adaptive median filter has three purposes:

- Remove impulse noise
- Provide smoothing of other noise
- Reduce distortion

44

Adaptive Median Filter: Example



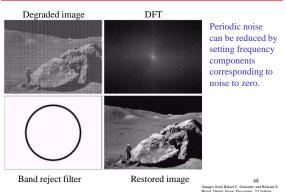
More small details are preserved

47 (Images from Rafnel C. Gonzalez and Richard I Wood, Digital Image Processing, 2nd Edition.

Adaptive Median Filter

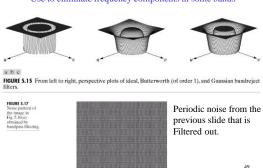
Purpose: want to remove impulse noise while preserving edges Algorithm: Level A: $A1 = z_{\text{median}} - z_{\text{min}}$ If A1 > 0 and A2 < 0, goto level B Else increase window size If window size $\leq S_{\text{max}}$ repeat level A Else return z_{xy} Level B: $\mathbf{B1} = z_{\mathrm{xy}} - z_{\mathrm{min}}$ $B2 = z_{xy} - z_{ma}$ If B1 > 0 and B2 < 0, return z_{xy} Else return z_{median} where $z_{\min} = \min \max \text{ gray level value in } S_{\infty}$ $z_{\text{max}} = \text{maximum gray level value in } S_{xy}$ $z_{\text{median}} = \text{median of gray levels in } S_{xy}$ z_{xy} = gray level value at pixel (x,y) S_{max} = maximum allowed size of S_{xy}

Periodic Noise Reduction by Freq. Domain Filtering

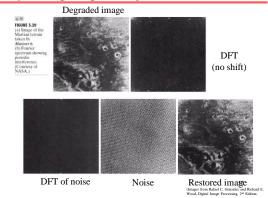


Band Reject Filters

Use to eliminate frequency components in some bands

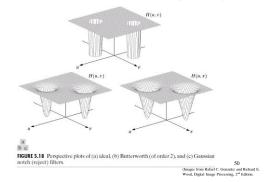


Example: Image Degraded by Periodic Noise



Notch Reject Filters

A notch reject filter is used to eliminate some frequency components.



Estimation of Degradation Model

Degradation model:

$$g(x, y) = f(x, y) * h(x, y) + \eta(x, y)$$
 or
$$G(u, v) = F(u, v)H(u, v) + N(u, v)$$

Purpose: to estimate h(x,y) or H(u,v)

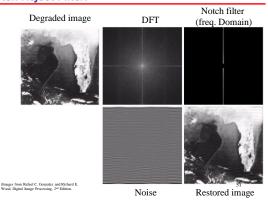
Why? If we know exactly h(x,y), regardless of noise, we can do deconvolution to get f(x,y) back from g(x,y).

Methods:

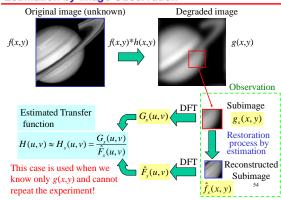
- 1. Estimation by Image Observation
- 2. Estimation by Experiment
- 3. Estimation by Modeling

53 (Images from Rafael C. Gonzalez and Richard

Notch Reject Filter:

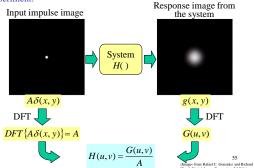


Estimation by Image Observation



Estimation by Experiment

Used when we have the same equipment set up and can repeat the experiment.



Estimation by Modeling: Motion Blurring (cont.)

$$G(u,v) = \int_{0}^{T} \int_{-\infty-\infty}^{\infty} f(x+x_0(t), y+y_0(t))e^{-j2\pi(ux+vy)}dxdy dt$$

$$= \int_{0}^{T} \left[F(u,v)e^{-j2\pi(ux_0(t)+vy_0(t))} \right] dt$$

$$= F(u,v) \int_{0}^{T} e^{-j2\pi(ux_0(t)+vy_0(t))} dt$$

Then we get, the motion blurring transfer function:

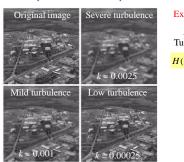
$$H(u,v) = \int_{0}^{T} e^{-j2\pi(ux_0(t)+vy_0(t))} dt$$

For constant motion $(x_0(t), y_0(t)) = (at, bt)$

$$H(u,v) = \int_{0}^{T} e^{-j2\pi(ua+vb)} dt = \frac{T}{\pi(ua+vb)} \sin(\pi(ua+vb)) e^{-j\pi(ua+vb)}$$

Estimation by Modeling

Used when we know physical mechanism underlying the image formation process that can be expressed mathematically.



Example:

Atmospheric Turbulence model

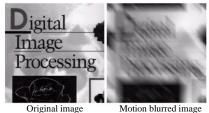
$$H(u,v) = e^{-k(u^2+v^2)^{5/6}}$$

56
(Images from Rafael C. Gonzalez and Richard I
Wood Dicital Image Processing 2nd Edition

Motion Blurring Example

For constant motion

$$H(u,v) = \frac{T}{\pi(ua+vb)}\sin(\pi(ua+vb))e^{-j\pi(ua+vb)}$$



a = b = 0.1, T = 1

59
(Images from Rafael C. Gonzalez and Richan Wood Digital Image Propagate 2th Edition

demos/demo5blur_invfilter

Estimation by Modeling: Motion Blurring

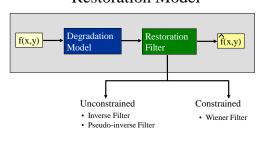
Assume that camera velocity is $(x_0(t), y_0(t))$ The blurred image is obtained by

$$g(x, y) = \int_{0}^{T} f(x + x_0(t), y + y_0(t))dt$$

where T =exposure time.

$$\begin{split} G(u,v) &= \int\limits_{-\infty-\infty}^{\infty} g(x,y) e^{-j2\pi(ux+vy)} dx dy \\ &= \int\limits_{-\infty-\infty}^{\infty} \int\limits_{0}^{\infty} \int\limits_{0}^{T} f(x+x_0(t),y+y_0(t)) dt \Bigg] e^{-j2\pi(ux+vy)} dx dy \\ &= \int\limits_{0}^{T} \int\limits_{-\infty-\infty}^{\infty} \int\limits_{0}^{\infty} f(x+x_0(t),y+y_0(t)) e^{-j2\pi(ux+vy)} dx dy \Bigg] dt \end{split}$$

Restoration Model



Inverse Filter

From degradation model:

G(u,v) = F(u,v)H(u,v) + N(u,v)

after we obtain H(u,v), we can estimate F(u,v) by the inverse filter:

$$\hat{F}(u,v) = \frac{G(u,v)}{H(u,v)} = F(u,v) + \frac{N(u,v)}{H(u,v)}$$

Noise is enhanced when H(u,v) is small.

To avoid the side effect of enhancing noise, we can apply this formulation to freq. component (u,v) with in a radius D_0 from the center of H(u,v).

In practical, the inverse filter is not popularly used.

WIENER FILTERING

- · Inverse filtering has no explicit provision for handling noise
- The wiener filter incorporates both degradation function, and statistical characteristics of noise in the restoration process.
- Objective of the wiener filter is to find the estimate of uncorrupted image f, such that the mean square error is minimum.
- · The wiener filter is an optimum filter
- Conditions
 - (1) Noise and image are uncorrelated
 - (2) One or the other has zero mean
 - (3) Gray levels in fare linear function of gray levels in g

Inverse Filtering

Limitations:

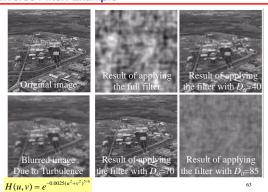
- Even if the degradation function is known the undegraded image cannot be recovered exactly because N(u,v) is the random function which is not known.
- If the degradation function has '0' or small value the ratio easily dominates the estimate F(u,v)
- One approach to get rid of 0 or small value problem is to limit the filter frequency to the value near the origin.

Norbert Wiener (1894-1964)

The renowned MIT professor Norbert Wiener was famed for his absent-mindedness. While crossing the MIT campus one day, he was stopped by a student with a mathematical problem. The perplexing question answered, Norbert followed with one of his own: "In which direction was I walking when you stopped me?" he asked, prompting an answer from the curious student. "Ah," Wiener declared, "then I've had my lunch"

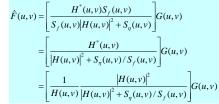
Anecdote of Norbert Wiener

Inverse Filter: Example



Wiener Filter: Minimum Mean Square Error Filter

Objective: optimize mean square error: $e^2 = E\{(f - \hat{f})^2\}$ Wiener Filter Formula:



H(u,v) =Degradation function

 $S_n(u,v)$ = Power spectrum of noise

 $S_{i}(u,v)$ = Power spectrum of the undegraded image

Wiener Filter: Minimum Mean Square Error Filter...

- H(u, v) = degradation function
- $H^*(u, v) = complex conjugate of H(u, v)$
- $|H(u, v)|^2 = H^*(u, v) H(u, v)$
- $S_n(u, v) = |N(u, v)|^2 = \text{power spectrum of the noise}$
- $S_f(u, v) = |F(u, v)|^2 = \text{power spectrum of undegraded image}$
- No problem with zeros unless $H(u,\,v)$ and $S\eta(u,\,v)$ are both zero
- When noise is zero, Wiener filter = inverse filter

Image Example

motion blurred image

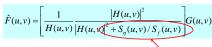
deblurred image after wiener filtering (K=0.01)

70

Approximation of Wiener Filter

Since $S\eta(u,v)=|N(u,v)|^2$ and $S_f(u,v)=|F(u,v)|^2$ are seldom known, the Wiener filter is frequently approximated

Wiener Filter Formula:



Difficult to estimate

Approximated Formula:

$$\hat{F}(u,v) = \left[\frac{1}{H(u,v)} \frac{|H(u,v)|^2}{|H(u,v)|^2 + K} \right] G(u,v)$$

Practically, K is chosen manually to obtained the best visual result!

Image Example (Con't)

K=0.01 K=0.001

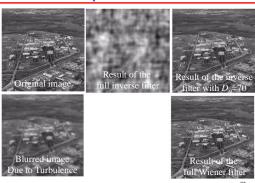
71

Wiener Filtering

ADVANTAGES:

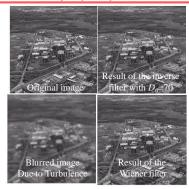
- 1. The wiener filter does not have zero value problem.
- 2.The result obtained by wiener filter is more closer to the original image than inverse filter.

Wiener Filter: Example



09

Wiener Filter: Example (cont.)



Constrained Least Squares Filter: Example

Constrained least square filter

$$\hat{F}(u,v) = \left[\frac{H^*(u,v)}{|H(u,v)|^2 + \gamma |P(u,v)|^2} \right] G(u,v)$$

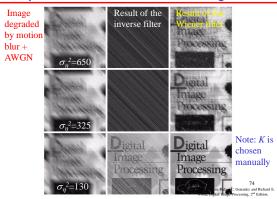
 γ is adaptively adjusted to achieve the best result.

Results from the previous slide obtained from the constrained least square filter

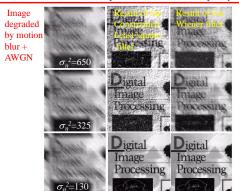
76

77

Example: Wiener Filter and Motion Blurring



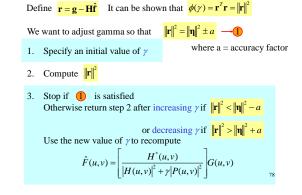
Constrained Least Squares Filter: Example (cont.)



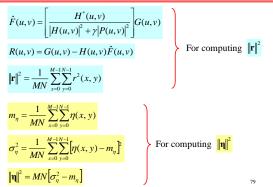
Constrained Least Squares Filter

Degradation model: Written in a matrix form $g(x, y) = f(x, y) *h(x, y) + \eta(x, y)$ $g = Hf + \eta$ Objective: to find the minimum of a criterion function $C = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left[\nabla^2 f(x, y) \right]^2$ Subject to the constraint $\|\mathbf{g} - \mathbf{Hf}\|^2 = \|\mathbf{\eta}\|^2 \qquad \text{where} \qquad \|\mathbf{w}\|^2 = \mathbf{w}^T \mathbf{w}$ We get a constrained least square filter $\hat{F}(u, v) = \left[\frac{H^*(u, v)}{|H(u, v)|^2 + \gamma |P(u, v)|^2} \right] G(u, v)$ where $P(u, v) = \text{Fourier transform of } p(x, y) = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}_{75}$

Constrained Least Squares Filter: Adjusting y



Constrained Least Squares Filter: Adjusting γ (cont.)



Constrained Least Squares Filter: Example

Results obtained from constrained least square filters

