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 Image Segmentation 

  Segmentation was used to identify the object of image that we are interested. 

We have three approaches to do it. The first is Edge detection. The second is to use 

threshold. The third is the region-based segmentation. It does not mean that these 

three of that method can solve all of the problems that we met, but these approaches 

are the basic methods in segmentation. 

1. Introduction 

  We first discuss from the case of the monochrome and static images. The 

fundamental problem in segmentation is to partition an image into regions. 

Segmentation algorithms for monochrome images are generally based on one of the 

following two basic categories. The first one is Edge-based segmentation. The second 

one is Region-based segmentation. Another method is to use the threshold. It belongs 

to Edge-based segmentation.  

There are three goals that we want to achieve: 

 

1. The first one is speed. Because we need to save the time from segmentation and 

give complicate compression more time to process. 

2. The second, one is to have a good shape matching even under less computation 

time. 

3. The third, one is that the result of segmenting shape will be intact but not 

fragmentary which means that we want to have good connectivity. 

 

2. Edge-Based Segmentation 

 The focus of this section is on the segmentation methods based on detection in 

sharp, local changes in intensity. The three types of image feature in which we are 

interested are isolated points, lines , and edges. Edge pixels are pixels at which the 

intensity of an image function changes abruptly. 

 

2.1. Fundamental 

  We know local changes in intensity can be detected using derivatives. For 
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reasons that will become evident , first- and second-order derivatives are particularly 

well suited for this purpose. 

 

Figure 2.1 The intensity histogram of image 

We have following conclusions from Figure 2.1 The intensity histogram of image 

Figure 2.1: 

First-order derivatives generally produce thicker edges in an image. 

1. Second-order derivative have a stronger response to fine detail, such as thin lines, 

isolated points, and noise. 

2. Second-derivatives produce a double-edge response at ramp and step transitions 

in intensity. 

3. The sign of the second derivative can be used to determine whether a transition 

into an edge is from light to dark or dark to light. 

 

2.2. Isolated Points 

  It is based on the conclusions reached in the preceding section. We know that 

point detection should be based on the second derivative, so we expect Laplacian 

mask. 

 

Figure 2.2  The mask of isolation point 
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We can use the mask to scan the all point of image , and count the response of every 

point, if the response of point is greater than T(the threshold we set), we can define 

the point to 1(light), if not, set to 0(dark). 

 1      if ( , )

0            otherwise( , )
R x y T

G x y


  (2.1) 

 

2.3. Line Detection 

 As discussion in section2.1,we know the second order derivative have stronger 

response and to produce thinner lines than 1
st
 derivative. We can get four different 

direction of mask. 

 

Figure 2.3  Line detection masks. 

 

Let talk about how to use the four masks to decide which direction of mask is better 

than others. Let 1R , 2R , 3R  and 4R denote the response of the masks in Figure 2.3. 

If at a point in the image , kR > jR ,for all j  k. 1R > jR  for j=2,3,4,that point is 

said to be more likely associated with a line in the direction of mask k. 

 

2.4. Edge detection 
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Figure 2.4  (a) Two region of constant intensity separated by an ideal vertical 

ramp edge.(b)Detail near the edge, showing a horizontal intensity profile. 

 We conclude from the observation that the magnitude of 1
st
 derivative can be used 

to detect the presence of an edge at a point in an image. The 2
nd

 derivative have two 

properties : (1) it produces two  values for every edge in an image.(2)its zero 

crossings can be used for locating the center of thick edges. 

 

2.4.1. Basic Edge Detection (gradient) 

 The image gradient is to find edge strength and direction at location (x,y) of image, 

and defines as the vector. 

 grad( )
x

y

f

g x
f f

g f

y

 
   
     
   
  

 (2.2) 

 

The magnitude (length) of vector f , denoted as M(x,y) 

 mag( ) x yf g g    (2.3) 

The direction of the gradient vector is given by the angle 

 1( , ) tan
y

x

g
x y

g
 

 
  

  

 (2.4) 

The direction of an edge at an arbitrary point (x,y) is orthogonal to the direction. 

We are dealing with digital quantities,so a digital approximation of the partial 

derivatives over a neighborhood about a point is required. 

1.  Roberts cross-gradient operators. Roberts [1965]. 
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Figure 2.5 Roberts mask 

 9 5( )x

f
g z z

x


  


 (2.5) 

 8 6( )y

f
g z z

y


  


 (2.6) 

 

2.  Prewitt operator 

 

Figure 2.6 Prewitt’s mask 

 7 8 9 1 2 3( ) ( )x

f
g z z z z z z

x


      


 (2.7) 

 3 6 9 1 4 7( ) ( )y

f
g z z z z z z

y


      


 (2.8) 

 

3.  Sobel operator 
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Figure 2.7 (a)~(g) are region of an image and various masks used to compute the 

gradient at the point labeled 5z
 

 7 8 9 1 2 3( 2 ) ( 2 )x

f
g z z z z z z

x


      


 (2.9) 

 3 6 9 1 4 7( 2 ) ( 2 )y

f
g z z z z z z

y


      


 (2.10) 

 

The Sobel mask uses 2 in the center location for image smoothing. The Prewitt masks 

are simpler to implement than Sobel masks, but the Sobel masks have better 

noise-suppression(smoothing) characteristics makes them preferable. 

 

In the previous discussion, we just discuss to obtain the xg
and yg

. However, this 

implementation is not always desirable ,so an approach used frequently is to 

approximately the magnitude of the gradient by absolute values: 

 ( , ) x yM x y g g   (2.11) 

 

2.4.2. The Marr-Hildreth edge detector(LoG) 

 This method in use at the time were based on using small operators ,and we 

discuss previously the 2
nd

 derivative is better than 1
st
 derivative in small operator. 

Then we use Laplacian to make it. 
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Figure 2.8 5x5mask of LOG 

The Marr-Hildreth algorithm consists of convolving the LoG filter with an input 

image, ( , )f x y . 

 
2( , ) [ ( , )] ( , )g x y G x y f x y    (2.12) 

 

Because these are linear process, Eq(2.4-9) can be written also as  

 
2( , ) [ ( , ) ( , )]g x y G x y f x y   (2.13) 

 

It’s edge-detection algorithm may be summarized as follow: 

1. Filter the input image with an n n Gaussian lowpass filter(It can smooth the   

large numbers of small spatial details). 

2. Compute the Laplacian of the image resulting from Step1 using. 

3. Finding the zero crossings of the image from Step2. 

To specify the size of Gaussian filter, recall that about 99.7% of the volume under a 

2-D Gaussian surface lies between 3  about the mean. So 6n  . 

 

 

Figure 2.9  (a) Image of input.  (b) After using the LoG with threshold 200. 
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2.5. Edge Linking and Boundary Detection 

 Edge detection should yield sets of pixel lying on edge, but noise would breaks in 

the edges due to nonuniform illumination. Therefore, edge detection typically is 

followed by linking algorithms designed to assemble edge pixels into meaningful 

edges and/or region boundaries. 

 

2.5.1. Local processing 

 This edge linking is to analyze the characteristics of pixels in a small 

neighborhood about every point (x,y) that has been declared an edge point by 

previous techniques. 

 

The two principle properties used for establishing similarity of edge pixels are 

1. the strength(magnitude) 

 ( , ) ( , )M s t M x y E   (2.14) 

xyS denote the set of coordinates of a neighborhood centered at point ( , )x y . 

E is a positive threshold.  

2. The direction of the gradient vector 

 ( , ) ( , )s t x y A    (2.15) 

A is a positive angle threshold. 

 

2.5.2. Regional processing 

 Often, the location of regions of interest in an image are known or can be 

determined. In such situations ,we can use techniques for linking pixels on a regional 

basis, with the desired result being an approximation to the boundary of the region. 

We discuss the mechanics of the procedure using the following Fig2.6 

 

Figure 2.10 illustration of the iterative polygonal fit algorithm 

An algorithm for finding a polygonal fit may be stated as follows: 
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1. Specify two starting point A and B. 

2. Connected A and B ,and compare which points are defined vertices of the 

polygon max and larger than T(threshold). 

3. Then connect all the point we have, thus compare it like step 2 until distance 

between every point and connected lines vertices is smaller than T. 

 

2.5.3. Global processing using the Hough transform 

 In regional processing, it makes sense to link a given set of pixels only if we know 

that they are part of the boundary of a meaningful region. Often, we have to work 

with unstructured environments in which all we have.  

 

We can use Hough transform to use coordinate transition to find out the similar point 

in other place. 

 

Figure 2.11 (a)xy-plane.  (b)Parameter space 

Consider a point ( , )i ix y  in the xy-plane and the general equation of a straight line 

in slope-intercept from, i iy ax b  ,a second point ( , )j jx y  also has a line in 

parameter space associated with it .but a practical difficulty with the approach, is that 

a (slope of a line)approaches infinity as the line approaches the vertical direction. One 

way to use the normal representation of a line: 

cos sinx y                               (2.5-3) 
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Figure 2.12  (a) A line in the xy-plane. (b)Sinusoidal curves in the ρθ-plane; the 

point of the intersection (ρ,θ)corresponds to the line passing through point (xi,yi) 

and (xj,yj)in the xy-plane 

 

2.6. Segmentation Using Morphological Watersheds 

2.6.1. Background 

 The concept of watershed is based on visualizing an image in three dimensions: 

two spatial coordinates and intensity. We consider three types of points:  

1. The points belonging to the local minimum. 

2. The points where a drop of water, if placed at the locations of these points, would 

fall to a single local minimum. It is called catchment basin or watershed. 

3. The points where water would be equally likely to fall to more than one local 

minimum.  They are similar to the crest lines on the topographic surface and are 

termed divide lines or watershed lines.  

 

The two main properties of watershed segmentation result are continuous boundaries 

and over-segmentations. As we know, the boundaries that made by the watershed 

algorithm are exact the watershed lines in the image. Therefore, the numbers of region 

basically will be equal to the numbers of minima in the image. There are two steps to 

achieve the solution using marker: 

1. Preprocessing 

2. Defining the criteria that the markers have to be satisfy. 

The following figures are the mechanism to construct dam. 
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Figur2.10(a)~(d) Watershed algorithm. 

Supposed that figure2.10 are the image of input , and the height of the “mountain” is 

proportional to intensity values input image. We start to flood water from below by 

letting water rise through the holes at a uniform rate. Figure (b) we see that water now 

has risen into the first and second catchment basins. So we will construct a dam to 

stop it to overflowing ,and do the same motion step by step. 

 

2.6.2. The Use of Markers 

 Direct application of the watershed segmentation algorithm in the form discussed 

in the previous section generally leads to oversegmentation due to noise and other 

local irregularities of gradient. 

 

An approach used to control oversegmentation is based on the concept of markers. 

Then we have markers. We have internal markers, associated with objects of interest, 

and external markers. A procedure for markers selection typically will consist of two 

principal steps: (1)preprocessing (usually smoothing) (2)definition of a set of criteria 

that markers must satisfy.(to do edge detection for every small region) 

(a)(b) 

(c)(d) 
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 Thresholding 

2.7. Basic Global Thresholding 

 As the fact that we need only the histogram of the image to segment it, 

segmenting images with Threshold Technique does not involve the spatial information 

of the images. Therefore, some problem may be caused by noise, blurred edges, or 

outlier in the image. That is why we say this method is the simplest concept to 

segment images. 

When the intensity distributions of objects and background pixels are sufficiently 

distinct, it is possible to use a single(global) threshold applicable over the entire image. 

The following iterative algorithm can be used for this purpose: 

1. Select an initial estimate for the global threshold, T. 

2. Segment the image using T as 

  1      if f(x,y)

0      if f(x,y) T( , ) Tg x y 

  (2.16) 

This will produce two groups of pixels: 1G consisting of all pixels with intensity 

values > T, and 2G consisting of pixels with values   T. 

3. Compute the average(mean)intensity values 1m and 2m for the pixels 

in 1G and 2G . 

4. Compute a new threshold values: 

1 2

1
( )

2
T m m   

5. Repeats Step2 through 4 until the difference between values of T in successive 

iterations is smaller than a predefined parameter. 

 

2.8. Optimum Global Thresholding Using Otsu’s Method 

Thresholding may be viewed as a statistical-decision theory problem whose objective 

is to minimize the average error incurred in assigning pixels to two or more groups. 

Let{0,1,2,…,L-1}denote the L distinct intensity levels in a digital image of size 

M N pixels, and let in denote the number of pixels with intensity i . The total 

number, MN, of pixels in the image is 0 1 2 1... LMN n n n n      . The normalized 
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histogram has components /i ip n MN , from which it follows that 

 
1

0

1, 0
L

i i

i

p p




   (2.17) 

 

Now, we select a threshold ( ) ,0 1T k k k L    , and use it to threshold the input 

image into two classes, 1C and 2C , where 1C consist with intensity in the range[0, ]k  

and 2C consist with [ 1, 1]k L  . 

Using this threshold , 1( )P k ,that is assigned to 1C  and given by the cumulative sum. 

 1

0

( )
k

i

i

P k p


  (2.18) 

 
1

2 1

1

( ) 1 ( )
L

i

i k

P k p P k


 

    (2.19) 

 

The validity of the following two equations can be verified by direct substitution of 

the preceding result: 

 1 1 2 2 GP m P m m   (2.20) 

 1 2+ =1P P  (2.21) 

In order to evaluate the “goodness” of the threshold at level k we use the normalized, 

dimensionless metric 

 
2

B

2

G

( )
=

k



 (2.22) 

Where 2

G  is the global variance 

  
1

22

G

0

=
L

G i

i

i m p




  (2.23) 

And 2

B  is the between-class variance, define as : 

 2 2 2

B 1 1 2 2( ) ( )G GP m m P m m      (2.24) 

 2 2

B 1 2 1 2( ) ( )k P P m m   
2

1

1 1

( ( ) ( ))

( )(1 ( ))

Gm P k m k

P k P k




 (2.25) 

Indicating that the between-class variance and   is a measure of separability 
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between class. 

Then, the optimum threshold is the value, k ,that maximizes 2

B( )k
 

 
2 2

B B
1

( ) max ( )
o k L

k k 

  
  (2.26) 

In other word, to find k we simply evaluate (2.7-11) for all integer values of k 

Once k has been obtain, the input image ( , )f x y is segmented as before: 

 1      if f(x,y) k*

0      if f(x,y) k* ( , )g x y 

  (2.27) 

For x = 0,1,2,…,M-1 and y = 0,1,2…,N-1. This measure has values in the range 

 0 ( *) 1k   (2.28) 

 

2.8.1. Using image Smoothing/Edge to improve Global Threshold 

Compare the difference between preprocess of smoothing and Edge detection. 

 Smoothing Edge detection 

What situation is more 

suitable for the method 

Large object we are 

interested. 

Small object we are 

interested 

 

2.9. Multiple Threshold 

For three classes consisting of three intensity intervals, the between-class variance is 

given by: 

 2 2 2 2

B 1 1 2 2 3 3( ) ( ) ( )G G GP m m P m m P m m        (2.29) 

The following relationships hold: 

 1 1 2 2 3 3 GP m P m P m m    (2.30) 

 1 2 3+ +P =1P P  (2.31) 

The optimum threshold values, 

 
1 2

2 * * 2

B 1 2 B 1 2
1

( , ) max ( , )
o k k L

k k k k 
   

  (2.32) 

Finally, we note that the separability measure defined in section 2.7.2 for one 

threshold extends directly to multiple thresholds: 

 
2 * *

* * B 1 2
1 2 2

G

( , )
( , )

k k
k k





  (2.33) 

 

2.10. Variable Thresholding 

Image partitioning 
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One of the simplest approaches to variable threshold is to subdivide an image into 

nonoverlapping rectangles. This approach is used to compensate for non-uniformities 

in illumination and/or reflection. 

 

Figure 2.13  (a)Noisy, shaded image (b) Image subdivide into six subimages. 

(c)Result of applying Otsu’s method to each subimage individually. 

Image subdivision generally works well when the objects of interest and the 

background occupy regions of reasonably comparable size. When this is not the case, 

the method typically fail. 

 

Variable thresholding based on local image properties 

We illustrate the basic approach to local thresholding using the standard deviation and 

mean of the pixels in a neighborhood of every point in an image. Let xy and 

xym denote the standard deviation and mean value of the set of pixels contained in a 

neighborhood, xyS . 

 1  if Q(local parameters) is true

0 if Q(local parameters) is true( , )g x y   (2.34) 

 

Where Q is a predicate based on parameter computes using the pixels in 

neighborhood. 

     if ( , ) ( , )

 otherwise( , ) xy xytrue f x y a ANDf x y bm

xy xy falseQ m



 

  (2.35) 

 

Using moving average 

Computing a moving average along scan lines of an image. This implementation is 

quite useful in document processing, where speed is a fundamental requirement. The 

scanning typically is carried out line by line in a zigzag pattern to reduce illumination 

bias. 

 
1

1

2

1 1
( 1) ( ) ( )

k

i k k n

i k n

m k z m k z z
n n



 

  

      (2.36) 
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Let 1kz  denote the intensity of the point encountered in the scanning sequence at step 

k+1. Where n denote the number of point used in computing the average. 

1(1) /m z n  is the initial value. Segmentation is implemented using Eq(2.7-1) with 

xy xyT bm ,where b is constant and 
xym  is the moving average at point (x,y) in the 

input Image. 

 

Multivariable Thresholding 

We have been concerned with thresholding based on a single variable: gray-scale 

intensity. A notable example is color imaging, where red(R),greed(G), and blue(B) 

components are used to form a composite color image. It can be represented as a 3-D 

vector, z= 1 2 3( , , )Tz z z ,whose component are the RGB colors at a point. 

 

Let a denote the average reddish color in which we are interested, D(z,a) is a distance 

measure between an arbitrary color point, z, then we segment the input image as 

follows: 

 1  if D(z,a)<T

0 otherwise( , )g x y   (2.37) 

Note that the inequalities in this equation are the opposite of the equation we used 

before. The reason is that the equation D(z,a)=T defines a volume. 

 
1

2( , ) [( ) ( )]TD z a z a z a z a      (2.38) 

 
1

1 2( , ) [( ) ( )]TD z a z a z a C z a      (2.39) 

A more powerful distance measure is the so-called Mahalanobis distance. 

Where C is the covariance matrix of the zs, when C=I, the identity matrix. 

 

 

3. Region-Based Segmentation 

3.1. Region Growing 

Region growing segmentation is an approach to examine the neighboring pixels of  

the initial “seed points” and determine if the pixels are added to the seed point or  



17 
 

not.  

Step1.  Selecting a set of one or more starting point (seed) often can be based on the 

nature of the problem. 

Step2.  The region are grown from these seed points to adjacent point depending on 

a threshold or criteria(8-connected) we make. 

Step3.  Region growth should stop when no more pixels satisfy the criteria for 

inclusion in that region 

 

Figure 3.1 (a)Original image (b)Use step 1 to find seed based on the nature 

problem.(c) Use Step 2(4-connected here) to growing the region and finding the 

similar point. (d)(e) repeat Step 2. Until no more pixels satisfy the criteria. (f) The 

final image. 

Then we can conclude several important issues about region growing： 

1. The suitable selection of seed points is important. The selection of seed points is 

depending on the users. 

2. More information of the image is better. Obviously, the connectivity or pixel 

adjacent information is helpful for us to determine the threshold and seed points. 

3. The value, “minimum area threshold”. No region in region growing method 

result will be smaller than this threshold in the segmented image. 

4. The value, “Similarity threshold value“. If the difference of pixel-value or the 

difference value of average gray level of a set of pixels less than “Similarity 

threshold value”, the regions will be considered as a same region.  

5. The result of an image after region growing still have point’s gray-level higher 
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than the threshold but not connected with the object in image. 

 

We briefly conclude the advantages and disadvantages of region growing. 

Advantages： 

1. Region growing methods can correctly separate the regions that have the same 

properties we define. 

2. Region growing methods can provide the original images which have clear edges 

the good segmentation results. 

3. The concept is simple. We only need a small numbers of seed point to represent t 

he property we want, then grow the region. 

4. We can choose the multiple criteria at the same time. 

It performs well with respect to noise, which means it has a good shape matching of 

its result. 

Disadvantage： 

1.  The computation is consuming, no matter the time or power. 

2.  This method may not distinguish the shading of the real images. 

In conclusion, the region growing method has a good performance with the good 

shape matching and connectivity. The most serious problem of region growing 

method is the time consuming.  

 

3.2. Simulation of Region Growing Using C++. 
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Figure 3.2 Lena image after using region growing, there are 90% pixels have 

been classified. Threshold/second: 20/4.7 seconds. 
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The method have connected region, but it need more time to process. 

 

3.3. Region Splitting and Merging 

An alternative method is to subdivide an image initially into a set of arbitrary, disjoint 

regions and then merge and/or split the region. 

The quadtrees means that we subdivide that quadrant into subquadrants, and it is the 

following as: 

1. Split into four disjoint quadrants any region iR  for which 

( )iQ R FALSE (means the region don’t satisfy same logic in iR ) . 

2. When no further splitting is possible, merge any adjacent region jR and kR for 

which ( )j kQ R R TRUE  (means that jR and kR have similarity we define in 

some where) . 

3. Stop when no further merging is possible. 

 

Advantage of region splitting and merging： 

We can split the image by choosing the criteria we want, such as segment variance or 

mean of the pixel-value. And the splitting criteria can be different from the merging 

criteria. 

Disadvantage of it： 

1.  Computation is intensive. 

2.  Probably producing the blocky segments. 

The blocky segment problem effect can be reduce by splitting for higher resolution, 

but at the same time, the computational problem will be more serious.    

 


