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Spatial domain: Enhancement in the case of a single image 

 

Spatial masks 

 

Many image enhancement techniques are based on spatial operations performed on local 

neighbourhoods of input pixels. 

 

The image is usually convolved with a finite impulse response filter called spatial mask. The use of 

spatial masks on a digital image is called spatial filtering. 

 

The mechanics of spatial filtering are illustrated in Fig. 3.32. The process consists simply of moving the 

filter mask from point to point in an image. At each point (x, y), the response of the filter at that point is 

calculated using a predefined relationship. For linear spatial filtering, the response is given by a sum of 

products of the filter coefficients and the corresponding image pixels in the area spanned by the filter 

mask. For the 3*3 mask shown in Fig. 3.32, the result (or response),R, of linear filtering with the filter 

Mask at a point (x, y) in the image is 

 

 

 

which we see is the sum of products of the mask coefficients with the corresponding pixels directly 

under the mask. Note in particular that the coefficient w(0, 0) coincides with image value f(x, y), 

indicating that the mask is centered at (x, y) when the computation of the sum of products takes place. 

 

In general, linear filtering of an image f of size of size M X N with a filter mask of size m x n is given by 

the expression: 

 



 

Where a=(m-1)/2 and b=(n-1)/2 

 

 

3.6 Smoothing Spatial Filters 

 

Smoothing filters are used for blurring and for noise reduction. Blurring is used in preprocessing steps, 

such as removal of small details from an image prior to (large) object extraction, and bridging of small 

gaps in lines or curves. Noise reduction can be accomplished by blurring with a linear filter and also by 

nonlinear filtering 

3.6.1 Smoothing Linear Filters 

 

The output (response) of a smoothing, linear spatial filter is simply the average of the pixels contained in 

the neighborhood of the filter mask. These filters sometimes are called averaging filters. For reasons 

explained in Chapter 4, they also are referred to a lowpass filters. 



 

The idea behind smoothing filters is straightforward. By replacing the value of every pixel in an image by 

the average of the gray levels in the neighborhood defined by the filter mask, this process results in an 

image with reduced “sharp” transitions in gray levels. Because random noise typically consists of sharp 

transitions in gray levels, the most obvious application of smoothing is noise reduction. However, edges 

(which almost always are desirable features of an image) also are characterized by sharp transitions in 

gray levels, so averaging filters have the undesirable side effect that they blur edges. 

 

Fig: Two 3x3 smoothing (averaging) filter masks. The constant multiplier in front of each mask is equal 

to the sum of the values of its coefficients, as is required to compute the average 

 

Figure shows two 3*3 smoothing filters. Use of the first filter yields the standard average of the pixels 

under the mask. This can best be seen by substituting the coefficients of the mask into Eq 

 

 

which is the average of the gray levels of the pixels in the 3*3 neighborhood defined by the mask. A 

spatial averaging filter in which all coefficients are equal is sometimes called a box filter 

 

The second mask shown in Fig. is a little more interesting. This mask yields a so-called weighted average, 

terminology used to indicate that pixels are multiplied by different coefficients, thus giving more 

importance (weight) to some pixels at the expense of others. In the mask shown in Fig.(b) the pixel at 

the center of the mask is multiplied by a higher value than any other, thus giving this pixel more 

importance in the calculation of the average. The other pixels are inversely weighted as a function of 

their distance from the center of the mask. The diagonal terms are further away from the center than 

the orthogonal neighbors (by a factor of ) and, thus, are weighed less than these immediate neighbors of 

the center pixel. The basic strategy behind weighing the center point the highest and then reducing the 



value of the coefficients as a function of increasing distance from the origin is simply an attempt to 

reduce blurring in the smoothing process.  

 

The general implementation for filtering an M*N image with a weighted averaging filter of size m*n (m 

and n odd) is given by the expression 

 

 

 

 

 



 

 

3.6.2 Order Statistics Filter (Eg: Median Filter) 

 

Median filter replaces the pixel at the center of the filter with the median value of the pixels falling 

beneath the mask. Median filter does not blur the image but it rounds the corners. 

 

Median filter, which, as its name implies, replaces the value of a pixel by the median of the gray levels in 

the neighborhood of that pixel (the original value of the pixel is included in the computation of the 

median). Median filters are particularly effective in the presence of impulse noise, also called salt-and-

pepper noise because of its appearance as white and black dots superimposed on an image 

 

Consider 3x3 original image  

 

 

Median filtering using the full 3×3 neighborhood: 

We sort the original image values on the full 3×3 window: 55 , 68 , 77 , 90 , 91 , 95 , 115 , 151 , 210 

median value = 91. We replace the center pixel(i.e 68) by 91. Other pixels are unchanged 

 



 

 

Questionnaire 

1.What is the value of the yellow box after median filtering? 

 Answers: a)  7      b)  1      c) 3       d   9 

 

 

2. What are the values of yellow boxes after median filtering is done? 

.   



Answers: a) (b)  

 

 

Sharpening Spatial Filters (High Pass)  

 

 To highlight fine detail in an image  

 To enhance detail that has been blurred, either in error or as a natural effect of a particular 

method of image acquisition 

 

High pass filters let the high frequency content of the image pass through the filter and block the low 

frequency content. 

 High pass filters can be modelled by first order derivative as: 

 

 

A second order derivative can also be used for extracting high frequency data  

 



 

 

Figure 3.38(a) shows a simple image that contains various solid objects, a line, and a single noise point. 

Figure 3.38(b) shows a horizontal gray-level profile (scan line) of the image along the center and 

including the noise point. Figure 3.38(c) shows a simplification of the profile, with just enough numbers 

to make it possible for us to analyse how the first- and second-order derivatives behave as they 

encounter a noise point, a line, and then the edge of an object. 

 

Let us consider the properties of the first and second derivatives as we traverse the profile from left to 

right. First, we note that the first-order derivative is nonzero along the entire ramp, while the second-

order derivative is nonzero only at the onset and end of the ramp. Because edges in an image resemble 

this type of transition, we conclude that first-order derivatives produce “thick” edges and second-order 

derivatives, much finer ones. Next we encounter the isolated noise point. Here, the response at and 

around the point is much stronger for the second- than for the first-order derivative. Of course, this is 

not unexpected. A second-order derivative is much more aggressive than a first-order derivative in 

enhancing sharp changes. Thus, we can expect a second-order derivative to enhance fine detail 

(including noise) much more than a first-order derivative. The thin line is a fine detail, and we see 

essentially the same difference between the two derivatives. If the maximum gray level of the line had 

been the same as the isolated point, the response of the second derivative would have been stronger 

for the latter. Finally, in this case, the response of the two derivatives is the same at the gray-level step 



(in most cases when the transition into a step is not from zero, the second derivative will be weaker).We 

also note that the second derivative has a transition from positive back to negative. In an image, this 

shows as a thin double line. This “double-edge” effect is an issue that will be important in Chapter 10, 

where we use derivatives for edge detection. It is of interest also to note that if the gray level of the thin 

line had been the same as the step, the response of the second derivative would have been stronger for 

the line than for the step. 

 

In summary, comparing the response between first- and second-order derivatives, we arrive at the 

following conclusions. (1) First-order derivatives generally produce thicker edges in an image. (2) 

Second-order derivatives have a stronger response to fine detail, such as thin lines and isolated points. 

(3) First order derivatives generally have a stronger response to a gray-level step. (4) Second- order 

derivatives produce a double response at step changes in gray level. We also note of second-order 

derivatives that, for similar changes in gray-level values in an image, their response is stronger to a line 

than to a step and to a point than to a line. 

 

Use of Second Derivatives for Enhancement–The Laplacian 

Development of the method 

It can be shown that the simplest isotropic derivative operator is the Laplacian, which, for a function 

(image) f(x, y) of two variables, is defined as 

 

Because derivatives of any order are linear operations, the Laplacian is a linearoperator. 

Taking into account that we now have two variables, we use the following notation for the partial 

second-order derivative in the x-direction: 

 

and, similarly in the y-direction, as 

 

The digital implementation of the two-dimensional Laplacian in Eq. (3.7-1) is obtained by summing these 

two components: 



 

 

 

This equation can be implemented using the mask shown in figure below 

 

The diagonal directions can be incorporated in the definition of the digital Laplacian by adding two more 

terms to Eq. (3.7-4), one for each of the two diagonal directions. Since each diagonal term also contains 

a –2f(x, y) term, the total subtracted from the difference terms now would be –8f(x, y). The mask used 

to implement this new definition is shown in Fig. 3.39(b). 

 

Because the Laplacian is a derivative operator, its use highlights gray-level discontinuities in an image 

and deemphasizes regions with slowly varying gray levels.This will tend to produce images that have 

grayish edge lines and other discontinuities, all superimposed on a dark, featureless background. 

Background features can be “recovered” while still preserving the sharpening effect of the Laplacian 

operation simply by adding the original and Laplacian images. If the definition used has a negative 

center coefficient, then we subtract, rather than add, the Laplacian image to obtain a sharpened 

result.Thus, the basic way in which we use the Laplacian for image enhancement is as follows: 

 



Figure 3.40(a) shows an image of the North Pole of the moon. Figure 3.40(b) shows the result of filtering 

this image with the Laplacian mask in Fig. 3.39(b). The image shown in Fig. 3.40(c) was scaled in the 

manner just described for display purposes. Finally, Fig. 3.40(d) shows the result obtained using Eq. (3.7-

5). The detail in this image is unmistakably clearer and sharper than in the original image. 

 

 

Simplifications 

 

 

In the previous example, we implemented Eq. (3.7-5) by first computing the Laplacian-filtered image and 

then subtracting it from the original image. The coefficients of the single mask are easily obtained by 

substituting Eq. (3.7-4) for in the first line of Eq. (3.7-5): 
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This equation can be implemented using the mask shown in Fig. 3.41(a). The mask shown in Fig. 3.41(b) 

would be used if the diagonal neighbors also were included in the calculation of the Laplacian. Identical 

masks would have resulted if we had substituted the negative of Eq. (3.7-4) into the second line of Eq. 

(3.7-5). 



 

The results obtainable with the mask containing the diagonal terms usually are a little sharper than 

those obtained with the more basic mask of Fig. 3.41(a). This property is illustrated by the Laplacian-

filtered images shown in 

Figs. 3.41(d) and (e), which were obtained by using the masks in Figs. 3.41(a) and (b), respectively. By 

comparing the filtered images with the original image shown in Fig. 3.41(c), we note that both masks 

produced effective enhancement, but the result using the mask in Fig. 3.41(b) is visibly sharper. Figure 

3.41(c) is a scanning 

electron microscope (SEM) image of a tungsten filament following thermal failure; the magnification is 

approximately 250*.) 

 

 

Unsharp masking and high-boost filtering 

A process used for many years in the publishing industry to sharpen images consists of subtracting a 

blurred version of an image from the image itself. This process, called unsharp masking, is expressed as 

 



 

where fs(x, y) denotes the sharpened image obtained by unsharp masking, and is a blurred version of 

f(x, y). 

 

A slight further generalization of unsharp masking is called high-boost  filtering. A high-boost filtered 

image, fhb, is defined at any point (x, y) as 

 

 

where A-1 and, as before, is a blurred version of f. This equation may 

be written as 

 

By using Eq. (3.7-7), we obtain 

 

as the expression for computing a high-boost-filtered image. Equation (3.7-10) is applicable in general 

and does not state explicitly how the sharp image is obtained. If we elect to use the Laplacian, then we 

know that fs(x, y) can be obtained using Eq. (3.7-5). In this case, Eq. (3.7-10) becomes 

 

 



High-boost filtering can be implemented with one pass using either of the two masks shown in Fig. 3.42. 

Note that, when A=1, high-boost filtering becomes “standard” Laplacian sharpening. As the value of A 

increases past 1, the contribution of the sharpening process becomes less and less important. 

Eventually, if A is large enough, the high-boost image will be approximately equal to the original image 

multiplied by a constant. 

 

One of the principal applications of boost filtering is when the input image is darker than desired. By 

varying the boost coefficient, it generally is possible to obtain an overall increase in average gray level of 

the image, thus helping to brighten the final result. Figure 3.43 shows such an application. Part (a) of this 

figure is a darker version of the image in Fig. 3.41(c). Figure 3.43(b) shows the Laplacian computed using 

the mask in Fig. 3.42(b), with A=0.Figure 3.43(c) was obtained using the mask in Fig. 3.42(b) with A=1. As 

expected, the image has been sharpened, but it is still as dark as the original. Finally, Fig. 3.43(d) shows 

the result of using A=1.7.This is a much more acceptable result, in which the average gray level has 

increased, thus making the image lighter and more natural. 

 

 

 

Use of First Derivatives for Enhancement—The Gradient 

 

First derivatives in image processing are implemented using the magnitude of the gradient. For a 

function f(x, y), the gradient of f at coordinates (x, y) is defined as the two-dimensional column vector 



 

The magnitude of this vector is given by 

 

The components of the gradient vector itself are linear operators, but the magnitude of this vector 

obviously is not because of the squaring and square root operation. Although it is not strictly correct, 

the magnitude of the gradient vector often is referred to as the gradient. 

 

For practical reasons this can be simplified as:  yx GGf   

There is some debate as to how best to calculate these gradients but we will use: 

 

 

 

Based on the previous equations we can derive the Sobel Operators 

 

 

 

To filter an image it is filtered using both operators the results of which are added together. 
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Fig: Optical image of contact lens (b) Sobel gradient obtained with the two sobel masks using above 

two masks. The edge defects are quite visible in this image. 

 

Sobel filters are typically used for edge detection 

 

 

Combining Spatial Enhancement Methods 

 

Successful image enhancement is typically not achieved using a single operation. Rather we combine a 

range of techniques in order to achieve a final result. This example will focus on enhancing the bone 

scan to the right 

 

(a)Original image (b) Laplacian of (a) (c) Sharpened image obtained by adding (a) and (b) (d) Sobel of 

(a)  

 

 



 

 

 

(e) Sobel image smoothed with 5X5 averaging filter (f) Mask image formed by the product of (c) and 

(e) (g)Sharpened image obtained by the sum of (a) and (f) (h)Final image obyained by applying power 

law transform to (g) 

 

 

Compare the original and final images 

 

                                             

 

Image Enhancement in the Frequency Domain 

 

 

Fourier series 

 

Any function that periodically repeats itself can be expressed as the sum of sines and/or cosines 



of different frequencies, each multiplied by a different coefficient  

 

Fourier transform 

 

Even functions that are not periodic (but whose area under the curve is finite) can be expressed 

as the integral of sines and/or cosines multiplied by a weighting function  
 

The one-dimensional Fourier transform and its inverse Fourier transform (continuous case) 

 

 

 

 

Where   

 

Inverse Fourier transform:  
 

  

The two-dimensional Fourier transform and its inverse Fourier transform (continuous case) 

 

 

Inverse Fourier transform   

 
 
 
The one-dimensional Fourier transform and its inverse (discrete time case) 
 
 
Fourier transform (DFT) 
 
 
 
 
 
 
 
Inverse Fourier transform (IDFT) 
 
F(u) can be expressed in polar coordinates: 

 

 
 

 

 

– R(u): the real part of F(u) 

1     where)()( 2  




 jdxexfuF uxj 





 dueuFxf uxj 2)()(

 sincos je j 

 








 dydxeyxfvuF vyuxj )(2),(),( 

 








 dvduevuFyxf vyuxj )(2),(),( 

1,...,2,1,0for     )(
1

)(
1

0

/2  




 Muexf
M

uF
M

x

Muxj 

1,...,2,1,0for     )()(
1

0

/2 




MxeuFxf
M

u

Muxj 

( )

1/2 
2 2

1

( ) ( )

where  ( ) ( ) ( )   (magnitude or spectrum)

( )
           ( ) tan    (phase angle or phase spectrum)

( )

j uF u F u e

F u R u I u

I u
u

R u



 



   

 
  

 



– I(u): the imaginary part of F(u) 

Power spectrum: 

 

 

The two-dimensional Fourier transform and its inverse (discrete time case) 

Fourier transform (DFT) 

 

 

 

Inverse Fourier transform (IDFT) 

 

                                    u, v : the transform or frequency variables 

• x, y : the spatial or image variables 
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Some One-Dimensional Fourier Transform Examples 

 

Log(F) 



 

Correspondence between filtering in spatial and frequency domains 

Spatial domain refers to the image plane itself, and approaches in this category are based on 

direct manipulation of pixels in an image. Used for filtering basics, smoothing filters, sharpening 

filters, unsharp masking and laplacian. 

 

 

Frequency domain processing techniques are based on modifying the Fourier transform of the 

image. 

 

 

 



Steps involved in Frequency domain filtering 
 

 

 

 

Basics of filtering in the frequency domain  

 

Filtering in the frequency domain is straightforward. It consists of the following steps:  

1. Multiply the input image f(x,y) by (-1)
(x+y)

 to center the transform.  

2. Compute F(u, v), the DFT of the image from (1).  

3. Multiply F(u, v) by a filter function H(u, v).  

4. Compute the inverse DFT of the result in (3).  

5. Obtain the real part of the result in (4).  

6. Multiply the result in (5) by (-1)
(x+y)

.  

Point 3: G(u,v)=H(u,v)F(u,v) where G(u,v) is the Fourier transform of the filtered image and 

F(u, v) the Fourier transform of the Input 

Point 4: Output image=F
-1

(G(u,v) 

 



 
 

 

 

 

 

Some Basic Filters and their properties 

 

LPF  

Ideal  LPF 

 
The simplest lowpass filter we can imagine is a filter that ―cuts off’ all high frequency 

components of the Fourier transform that are at a distance greater than a specified distance D0 

from the origin of the (centered) transform. Such a filter is called a two-dimensional (2-D) ideal 

lowpass filter (ILPF) and has the transfer function given below 
 

 

 

 

where 
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Figure 2 (a) Perspective plot of an ILPF transfer function. (b) filter displayed as an image. (c) 

Filter radial cross section. 

 

 

The total image power PT is obtained by summing the components of the power spectrum at each 

point  (u,v), for u=0,1,2,…M-1 and v=0,1,2….N-1 that is 
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Where 

 

 
 

If the transform has been centered, a circle of radius r with origin at the center of the frequency 

rectangle encloses  percentage of the power, where  
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Above  figure shows the text pattern we used to illustrate spatial blurring. The fourier 

spectrum is shown in 4.11(b). The circles superimposed on the spectrum have radii of 

5,15,30,80 and 230 pixels. These circles enclose 02.0, 94.6, 96.4, 98 and 99.5 % of power 

respectively. 



 

 
 

  

Fig 4.12 (b) The severe blurring in this image is a clear indication that most of the sharp detail 

information in this picture is contained in the 8% power removed by the filter. As the filter radius 

increases, less and less power is removed, resulting in less severe blurring. Figure 4.12 (c) - (e) 

are characterized by ringing which becomes finer in texture as the amount of high frequency 

content removed decreases. 

 

 

 

 

 

 



Another example of ILPF 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.13 (a) A frequency-domain  ILPF of radius 5. (b) Corresponding  spatial filter. (c) Five 

impulses in the  spatial domain, simulating the values of five pixels. (d) Convolution of (b)  and 

(c) in the spatial domain. 
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Notation: the radius of center component and the number of circles per unit distance from the 

origin are inversely proportional to the value of the cutoff frequency. 

 

Butterworth  

 
The transfer function of a Butterworth lowpass filter (BLPF) of order n. and with cutoff 

frequency at a distance D0 from the origin, is defined as  
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A Butterworth filter of order 1 has no ringing. Ringing generally is imperceptible in filters of 

order 2, but can become a significant factor in filters of higher order. Figure 4 shows an 

interesting comparison between the spatial representations of BLPFs of various orders with 

cutoff frequencies of 5 pixels.  

 



 
Figure 4 (a)—(d) Spatial representation of BLPFs of order 1,2.5, and 20. and corresponding gray-level profiles 

through the center of the filters (all filters have a cutoff frequency of 5). Note that ringing increases as a function of 
filter order. 

It may be noted that BLPF of order 20 has a filter function almost akin to that of ILPF 

 

Gaussian 

 
The filter transfer Function of Gaussian Low Pass Filter (GLPF) is given as       

 

where σ is replaced by D0 the cutoff 
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The GLPF did not achieve as much smoothing as the BLPF of order 2 for the same value of 

cutoff frequency. 

 

 

 

 

 

 

 



Additional example of low pass filtering 

 
 

 

HPF  

 
Sharpening in Frequency domain can be got by applying HPF using the main scheme that 
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Ideal highpass Filter 
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Gaussian  highpass Filter 

Butterworth highpass Filter 

Filter 



Highpass Filters Spatial Representations 

 
 

Ideal HPF 
Filter function of an Ideal HPF is given as below 
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Figure 6 (a)Perspective plot of an IHPF transfer function. (b) filter displayed as an image. (c) 

Filter radial cross section. 

 

 

 



 

 

Butterworth  
The result is smoother than that of IHPFs and sharper than that of GHPFs 

 

 

 

 

 

 

 
Figure 7 (a)Perspective plot of an BHPF transfer function. (b) filter displayed as an image. (c) Filter radial cross 

section. 
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Gaussian 

 

 

 

 

 

 

 
Figure 8 (a)Perspective plot of an GHPF transfer function. (b) filter displayed as an image. 

(c) Filter radial cross section. 

 

 Laplacian 
The FT of n-order differential of a function is 

 

 

 

 

For a two-dimensional function f(x,y), it can be shown that 

 

 

 

 

So, Laplacian can be implemented in the frequency domain by using the filter 

 

 

 

Shift the center to (M/2, N/2) and obtain 

 

 

 

We have the following Fourier transform pairs 
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Laplacian output is not a enhanced image. To get enhanced image we have to subtract original 

image from the laplacian image. 
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Unsharp masking and high-boost filtering 

A process used for many years in the publishing industry to sharpen images consists of 

subtracting a blurred version of an image from the image itself. This process, called unsharp 

masking, is expressed as 

),(),(),( yxfyxfyxf lphp  ----------------(1) 

where fs(x, y) denotes the sharpened image obtained by unsharp masking, and is a blurred 

version of f(x, y). 

A slight further generalization of unsharp masking is called high-boost  filtering.A high-boost 

filtered image, fhb, is defined at any point (x, y) as 
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Above equation can be written as ),(),(),()1(),( yxfyxfyxfAyxf lphb   
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When A=1, high boost filter reduces to regular high pass filter. 

From equation (1)  
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Therefore unsharp masking can be implemented directly in frequency domain by using 

composite filter    
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Similary high boost filtering can be implemented with the composite filter (A≥1) 
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High frequency emphasis has a filter function given by  

 

 
 

Homomorphic Filtering 

 
An image f(x,y) can be defined as the product of illumination i(x,y) and reflectance r(x,y)  

 

 

 
Because the fourier transform of the product of two function is not separable: 
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Therefore taking natural logarithm on both side  
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Taking Fourier transform on both sides 

 

 

 

 

 

 

 

Where  

   

If we process Z(u,v) by means of filter function H(u,v) then, 

 

 

 

In spatial domain  )},({),( 1 vuSyxs   

 

 

 

 

 

 

Where  

 

Finally, as z(x,y) was formed by taking the logarithm of the original image f(x,y), the inverse 

(exponential) operation yields the desired enhanced image, denoted by g(x,y), that is 
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This filtering technique is most famous for removing multiplicative noise and is carried out as 

shown in fig 10 

 
Figure 10 Block diagram of the process of Homomorphic filtering 
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The illumination components of an image generally characterized by slow spatail variations, 

while the reflectance component trand to vary abruptly, particularlt at the junctions of dissimilar 

objects. 

 

Low frequency-------------------------- Illumination 

High frequency--------------------------Reflectance 

 

If the paramenter L  and H are chosen so that 1L and 1H , the filter funcrion 

showm in figure below trends to decrease the contribution made bey the slow 

frequencies9illumination) and amplify the contribution made by high frequency 

comonents(reflectance). The net result is simultaneous dynamic range compression and contrast 

enhancement.                

 
Figure11  Filter Transfer Function of a 2Homomorphic Filter 

Using a slightly modified form of the Gaussian filter gives us  
 
 
 

 
 
Where C is a constant and it controls the sharpness of the slope of the filter function 
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