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SAMPLING PROCESS 

SAMPLING:

 Sampling operation is performed in accordance with the sampling theorem. 

 A message signal  may originate from a digital or analog source.  If the 

message signal is analog in nature, then it has to be converted into digital form before it can 

transmitted by digital means.  The process by which the continuous-time signal is converted into 

a discrete–time signal is called  Sampling. 

 

Statement:- “If a band –limited signal g(t) contains no frequency components for ׀f׀ > W, then it 

is completely described by instantaneous values g(kTs) uniformly spaced in time with period Ts 

≤ 1/2W.  If the sampling rate, fs is equal to the Nyquist rate or greater (fs ≥ 2W), the signal g(t) 

can be exactly reconstructed. 
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UFig 2.1:   Sampling  process 

 



Proof:-    Consider the signal g(t) is sampled by using a train of impulses sδ (t). 

SAMPLING THEOREM FOR LOW-PASS SIGNALS:-   

Let gδ(t) denote the ideally sampled signal, can be represented as  

 gδ(t) = g(t).sδ(t)          -------------------  2.1 

where    sδ(t) – impulse train defined by 
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The Fourier transform of an impulse train is given by  

 Sδ(f )= F[sδ(t)] =  fs ∑
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Applying F.T to equation 2.1 and using convolution in frequency domain property, 

               Gδ(f) =  G(f)  * Sδ (f) 

Using equation 2.4,     Gδ (f) = G(f) *  fs ∑
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                                       Fig. 2.2 Over Sampling (fs > 2W) 



 
Fig. 2.3 Nyquist Rate Sampling (fs = 2W) 

 

 

   
 

Fig. 2.4 Under Sampling (fs < 2W) 

 

 

 

 



 By passing the ideally sampled signal gδ(t) through an low pass filter ( called 

Reconstruction filter )  having  the  transfer function HR(f) with bandwidth, B satisfying the 

condition  W ≤ B ≤ (f s – W) ,  we can reconstruct the signal g(t).   For an ideal reconstruction 

filter  the bandwidth B is equal to W. 

Reconstruction of g(t) from g δ (t):  

 

               gδ (t)                                               gR(t) 

 

      

The output of LPF is,  gR(t) = gδ (t) * hR(t)  

                   where  hR(t) is the impulse response of the filter.   

In frequency domain,             GR(f) =  Gδ(f) .HR(f). 

For the ideal LPF        HR(f)  =       K   -W ≤ f ≤ +W 

         0     otherwise   

            then impulse response is hR(t) = 2WTs. Sinc(2Wt) 

Correspondingly  the reconstructed signal is  

        gR(t) = [ 2WTs Sinc (2Wt)] * [g δ (t)]  
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Fig: 2.5  Spectrum of sampled signal and  reconstructed signal 
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 Consider a band-pass signal g(t) with the spectrum shown in figure 2.6:  

Sampling of Band Pass Signals:  

        G(f) 
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Fig 2.6:  Spectrum  of a  Band-pass Signal 

 The signal g(t) can be represented by instantaneous values, g(kTs)  if the sampling rate fs 

is (2fu/m) where m is an integer defined as 

  ((fu / B) -1 )  <  m   ≤  (fu / B) 

 If the sample values are represented by impulses, then g(t) can be exactly reproduced 

from it’s samples by an ideal Band-Pass  filter with the response, H(f) defined as 

                                H(f)  =       1      fl < | f | <fu 

                                                  0      elsewhere 

 If the sampling rate, fs ≥ 2fu, exact reconstruction is possible in which case the signal g(t) may 

be considered as a low pass signal itself. 
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Example-1 :    

Fig 2.7:  Relation between Sampling rate, Upper cutoff frequency and Bandwidth.  



Consider a signal g(t) having  the Upper Cutoff frequency,    fu = 100KHz     and  the             

Lower Cutoff frequency   fl = 80KHz. 

 The ratio  of upper cutoff frequency to bandwidth of the signal  g(t) is   

       fu / B = 100K / 20K = 5.  

Therefore  we can  choose   m = 5. 

Then the sampling rate is      fs = 2fu / m  =  200K / 5  =  40KHz 

 

Example-2 :    

Consider a signal g(t) having  the Upper Cutoff frequency,    fu = 120KHz     and  the             

Lower Cutoff frequency   fl = 70KHz. 

 The ratio  of upper cutoff frequency to bandwidth of the signal  g(t) is   

       fu / B = 120K / 50K = 2.4  

Therefore  we can  choose   m = 2. ie.. m is  an integer less than (fu /B). 

Then the sampling rate is      fs = 2fu / m  =  240K / 2  =  120KHz 

  



 This scheme represents a natural extension of the sampling of low – pass signals. 

Quadrature Sampling of Band – Pass Signals: 

 In this scheme, the band pass signal is split into two components, one is in-phase 

component and other is quadrature component.  These two components will be low–pass signals 

and are sampled separately. This form of sampling is called quadrature sampling. 

 Let g(t) be a band pass signal, of bandwidth ‘2W’ centered around the frequency, fc,  

(fc>W).  The in-phase component, gI(t) is obtained by multiplying g(t) with cos(2πfct) and then 

filtering out the high frequency components.  Parallelly  a quadrature phase component is 

obtained by multiplying g(t) with sin(2πfct) and then filtering out the high frequency 

components.. 

The band pass signal g(t) can be expressed as, 

   g(t) = gI(t). cos(2πfct) – gQ(t) sin(2πfct) 

The in-phase, gI(t)  and quadrature phase gQ(t)  signals are low–pass signals, having band limited 

to (-W < f < W).  Accordingly  each component  may be sampled at the rate of  2W samples per 

second. 
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Fig 2.8:  Generation of in-phase and quadrature phase samples 
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a) Spectrum of  a  Band pass signal.  
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Fig 2.9  a) Spectrum of Band-pass signal  g(t) 

 

b) Spectrum of in-phase and quadrature phase signals 

 From the sampled signals gI(nTs) and gQ(nTs), the signals gI(t) and gQ(t) are obtained. To 

reconstruct the original band pass signal, multiply the signals gI(t) by cos(2πfct) and sin(2πfct) 

respectively and then add the results. 

RECONSTRUCTION: 
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Fig 2.10:    Reconstruction  of  Band-pass  signal  g(t) 
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Sample and Hold  Circuit  for  Signal  Recovery. 

 
In both the natural sampling  and flat-top sampling methods, the spectrum of the signals are 
scaled  by the ratio τ/Ts, where τ  is the pulse duration  and Ts is the sampling  period.  Since this 
ratio is very small, the signal power at the output of the reconstruction filter is correspondingly 
small. To overcome this  problem  a sample-and-hold  circuit is used . 
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a) Sample and Hold Circuit 
 

   
 
b) Idealized output waveform of the circuit 
 

 
Fig: 2.17   Sample Hold Circuit with Waveforms. 

The Sample-and-Hold circuit consists of an amplifier of unity gain and low output impedance, a 
switch and a capacitor; it is assumed that the load impedance is large. The switch is timed to 
close only for the small duration  of each sampling pulse, during which time the capacitor 
charges up to a voltage level equal to that of the input sample. When the switch is open , the 
capacitor retains the voltage level until the next closure of the switch. Thus the sample-and-hold 
circuit produces an output waveform that represents a staircase interpolation of the original 
analog signal. 
The output of a Sample-and-Hold circuit is  defined as 
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where  h(t) is the impulse response representing the action  of the Sample-and-Hold circuit; that  
is  
 
  h(t) =   1  for  0 < t < Ts 

0 for  t < 0  and t > Ts 
 
Correspondingly,  the spectrum  for  the output  of the Sample-and-Hold circuit  is given by, 
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             where   G(f)  is the FT of  g(t)  and  
               H(f)  =  Ts  Sinc( fTs)  exp( -jπfTs) 
 
   To recover  the original signal  g(t) without distortion, the output of the Sample-and-Hold 
circuit is passed through  a low-pass filter  and an equalizer. 
 
 
 
 
Sampled                                                                                                                   Analog                                       
Waveform                                                                                                      Waveform   
          
 
 

 
Fig. 2.18:  Components of a scheme for signal reconstruction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Signal  Distortion  in Sampling. 
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In deriving the sampling theorem for a signal g(t) it is assumed that the signal g(t) is strictly 
band-limited with no frequency components above  ‘W’ Hz.   However,  a signal cannot  be 
finite in both  time and frequency. Therefore the signal g(t)  must have infinite duration  for its 
spectrum to be strictly band-limited. 
 
In practice, we have to work with a finite segment of the signal in which case the spectrum 
cannot be strictly band-limited. Consequently  when a signal of finite duration is sampled an 
error in the reconstruction occurs as a result of the sampling process. 
 
Consider a signal g(t) whose spectrum G(f) decreases with the increasing frequency  without 
limit as shown in the figure 2.19.  The spectrum,  Gδ(f)  of the ideally  sampled signal , gδ(t)  is 
the sum  of  G(f)  and infinite number of frequency shifted replicas of G(f).  The replicas of G(f) 
are shifted  in frequency  by multiples of  sampling frequency, fs. Two replicas of G(f)  are 
shown in the figure 2.19. 
 
The use of a low-pass reconstruction filter  with it’s pass band extending from (-fs/2 to +fs/2)  no 
longer yields an undistorted version of the original signal g(t). The portions of the frequency 
shifted replicas are folded over inside the desired spectrum.  Specifically, high frequencies  in 
G(f) are reflected into low frequencies  in Gδ(f).  The phenomenon of overlapping in the 
spectrum is called as Aliasing  or Foldover

 

 Effect. Due to this phenomenon the information is 
invariably lost. 

 
 
Fig. 2.19 :   a) Spectrum of finite energy signal  g(t) 

 
 b) Spectrum of the ideally sampled signal. 

 
Bound On Aliasing Error: 



 
Let  g(t) be the message signal,  g(n/fs)  denote the sequence obtained by  sampling the signal 
g(t) and gi(t) denote the signal reconstructed from this sequence by interpolation; that is  
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Aliasing Error is given by,    ε  =  |  g(t)  -  gi(t) | 
 
Signal  g(t) is given by  
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Using Poisson’s formula   and Fourier Series expansions we can obtain the aliasing error as 
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Correspondingly the following observations can be done : 
 

1. The term corresponding to  m=0 vanishes. 
2. The absolute value  of the sum of a set of terms is less than or equal to the sum of the 

absolute values of the individual terms. 
3. The absolute value of the term  1- exp(-j2πmfst)  is less than or equal to 2. 
4. The absolute value of the integral in the above equation is bounded as  
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 Hence the aliasing error is bounded as  
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Example:    Consider a time shifted sinc pulse,  g(t) = 2 sinc(2t – 1). If g(t) is sampled at  
                   rate of 1sample per second  that is at  t = 0,  ± 1, ±2,  ±3  and so on  , evaluate    
                   the aliasing error. 
 



Solution:  The given signal g(t)  and it’s  spectrum are shown in fig. 2.20. 
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UFig. 2.20 
 

 
The sampled signal  g(nTs) = 0 for  n = 0, ± 1, ±2,  ±3  . . . . .and  reconstructed signal 
 

gi(t)  =  0  for  all t. 
From the figure, the sinc pulse attains it’s maximum value of 2 at time t equal to ½. The aliasing 
error cannot exceed  max|g(t)| = 2. 
 
From the spectrum,  the aliasing error  is equal to unity. 
 



 In this method of sampling, an electronic switch is used to periodically shift between the 

two contacts at a rate of fs = (1/Ts ) Hz, staying on the input contact for C seconds and on the 

grounded contact for the remainder of each sampling period. 

Natural Sampling:  

 The output xs(t) of the sampler consists of segments of x(t) and hence xs(t) can be 

considered as the product of x(t) and sampling function s(t). 

     xs(t)  = x(t) . s(t)      

The sampling function s(t) is periodic with period Ts, can be defined as, 

            S(t) =    1       2/τ− < t < 2/τ             ------- (1) 

               0         2/τ  Ts/2 > ׀t׀ >

                    
 UFig: 2.11   Natural Sampling – Simple Circuit. 

 

                          
                       UFig: 2.12   Natural Sampling – Waveforms. 

 

 



         Using Fourier series, we can rewrite the signal S(t) as  

 S(t) = Co + ∑
∞
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n
stnwCn     

     where the Fourier coefficients, Co = τ / Ts   &  Cn = fsτ Sinc(n fsτ ) 

           Therefore:  xs(t) = x(t) [ Co + ∑
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            xs (t) = Co.x(t) +2C1.x(t)cos(wst) + 2C2.x(t)cos (2wst) + . . . . . . . . 

 Applying Fourier transform for the above equation 

                                       FT 

   Using  x(t)         X(f) 

 x(t) cos(2πf0t)      ½ [X(f-f0) + X(f+f0)] 

 

 Xs(f) = Co.X(f) + C1 [X(f-f0) + X(f+f0)] + C2 [X(f-f0) + X(f+f0)] + ... … 
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Fig:2.13  Natural Sampling Spectrum 



The signal xs(t) has the spectrum which consists of message spectrum and repetition of message 

spectrum periodically in the frequency domain with a period of fs.  But the message term is 

scaled by ‘Co”.  Since the spectrum is not distorted it is possible to reconstruct x(t) from the 

sampled waveform xs(t).  

 

 In this method, the sampled waveform produced by practical sampling devices, the pulse 

p(t) is a flat – topped pulse of duration, 

 Flat Top Sampling:  

τ .   

   

   

 Fig. 2.14:  Flat Top Sampling Circuit 

 

                 
         

 

Fig. 2.15: Waveforms 



 Mathematically we can consider the flat – top sampled signal as equivalent to the 

convolved sequence of the pulse signal p(t) and the ideally sampled signal, x δ (t). 

 xs(t) = p(t) *x δ (t) 

xs(t) = p(t) * [ ∑
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Applying F.T, 

            Xs(f) = P(f).X δ (f) 
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  where  P(f) = FT[p(t)]  and     X δ (f) = FT[x δ (t)] 

 

 The sampled signal in the flat top sampling has the attenuated high frequency 

components.  This effect is  called  the  

Aperature Effect:  

 

Aperture Effect. 

 The aperture effect can be compensated by: 

1. Selecting the pulse width τ  as very small. 

2. by using an 

 

equalizer circuit. 

 

Sampled Signal 

  

 

 

Equalizer decreases the effect of the in-band loss of the interpolation filter (lpf).  

As the frequency increases, the gain of the equalizer increases.  Ideally the amplitude response of 

the equalizer is  
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