CANARA

ENGINEERING COLLEGE

Benjanapadavu, Mangalore-574219

Subject Code: 10ESL37

ANALOG ELECTRONICS LAB MANUAL

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

www.ajaybolar.weebly.com

CONTENTS			
Experiments	Page No.		
Diode Clipping Circuits	2		
Clamping Circuits	10		
Rectifier Circuits	16		
RC-Coupled Amplifier	24		
Darlington Emitter Follower	29		
R.C. Phase Shift Oscillator	33		
Verification of Network Theorems	36		
Series & Parallel Resonance Circuits	40		
Voltage Series Feedback Amplifier	44		
Class 'B' Push-Pull Amplifier	49		
Crystal Oscillator	51		
FET Hartley & Colpitts Oscillator	53		
Viva Questions	57		
Bibliography	60		
	Experiments Diode Clipping Circuits Clamping Circuits Rectifier Circuits RC-Coupled Amplifier Darlington Emitter Follower R.C. Phase Shift Oscillator Verification of Network Theorems Series & Parallel Resonance Circuits Voltage Series Feedback Amplifier Class 'B' Push-Pull Amplifier Crystal Oscillator FET Hartley & Colpitts Oscillator Viva Questions		

For more information and queries visit: www.ajaybolar.weebly.com

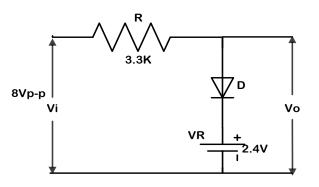
Analog Electronics Lab Manual DIODE CLIPPING CIRCUITS

Aim: To design and test diode clipping circuits for peak clipping and peak detection.

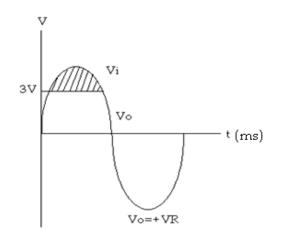
Components required:

-Power Supply

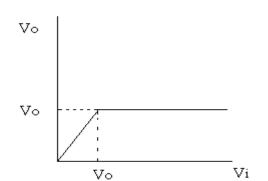
-Diodes IN4007or BY127


-Resistors

Procedure:


- Make the Connections as shown in the circuit diagram
- Apply sinusoidal input Vi of 1 KHz and of amplitude 8V P-P to the circuit.
- Observe the output signal in the CRO and verify it with given waveforms.
- Apply Vi and Vo to the X and Y channel of CRO and observe the transfer characteristic waveform and verify it.

I) **Positive Clipping Circuit:**


Circuit Diagram:

Waveforms:

Dept of E&C, CEC Transfer Characteristics:

To find the value of R:

Given: $R_f = 100\Omega$, $R_r = 100K\Omega$

R_f - Diode forward resistance

 R_r - Diode reverse resistance

$$R=\sqrt{R_fR_r}=\sqrt{100\times100\times10^3}=3.16K\Omega$$

Choose R as $10 \text{ K}\Omega$

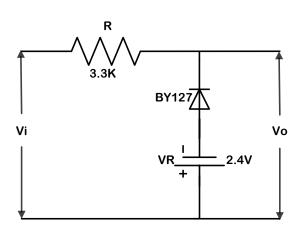
Let the output voltage be clipped at +3V

: V_{omax}=3V

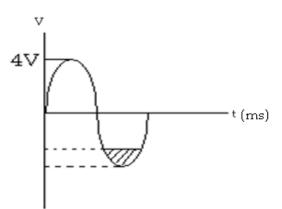
From the circuit diagram,

 $V_{omax} = V_r + V_{ref}$

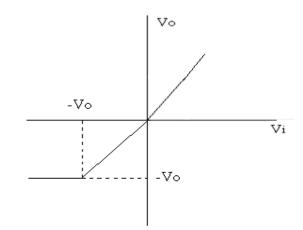
Where V_r is the diode drop = 0.6V


 \therefore V_{ref} = V_{omax} - V_r

=3 - 0.7


 V_{ref} = 2.3 V

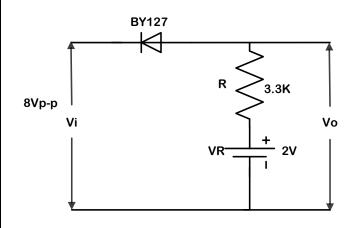
II) Negative Clipping Circuit:


Circuit Diagram:

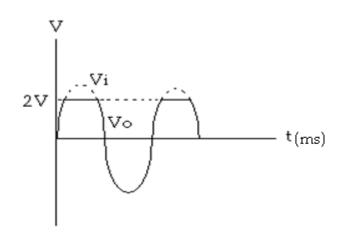
Waveforms:

Transfer Characteristics:

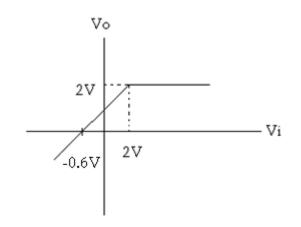
Let the output voltage be clipped at -3V


 V_{omin} = -3V

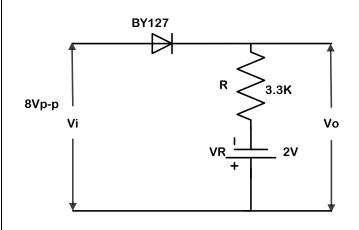
$$V_{omin} = -V_r + V_{ref}$$

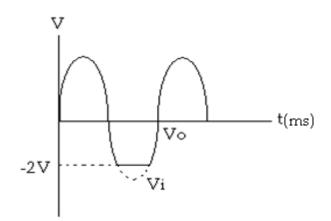

 $V_{ref} = V_{omin+}V_r = -3 + 0.7$

$$V_{ref}$$
 = -2.3V

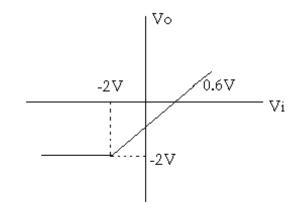

Circuit Diagram:

Waveforms:


Transfer Characteristics:

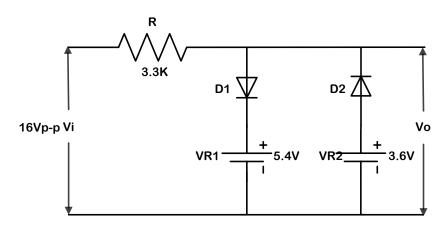

Let the output voltage be clipped at 2V

 $V_{omax} = V_{ref} = 2V$

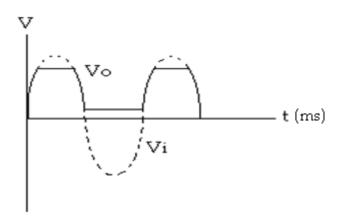

Circuit Diagram:

Waveforms:

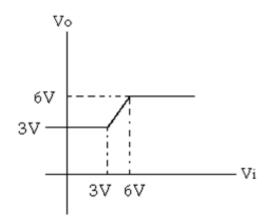
Transfer Characteristics:


Let the output voltage be clipped at -2V

 $V_{omin} = V_{ref} = -2V$


Analog Electronics Lab Manual

V) <u>Clipping at two independent levels:</u>


Circuit Diagram:

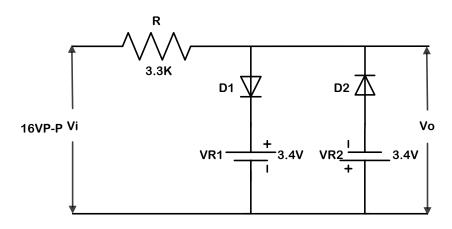
Waveforms:

Transfer Characteristics:

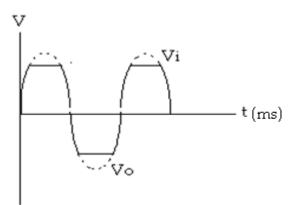
Let $V_{omax} = 6V$ and $V_{omin} = 3V$

 $:: V_{omax} = V_{r1} + V_r$

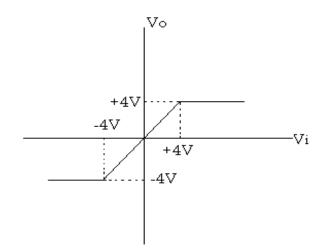
$$V_{r1} = V_{omax} - V_r = 6 - 0.7 = 5.3V$$


 $V_{omin} = V_{r2} V_r$

 $V_{r2} = V_{omin} + V_r = 3 + 0.7 = 3.7V$

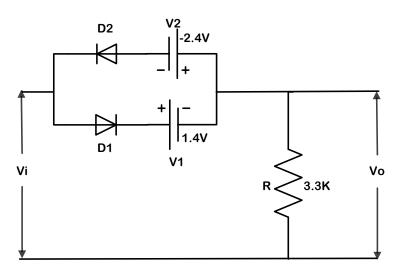

Analog Electronics Lab Manual

VI) Double ended clipper to generate a symmetric square wave:

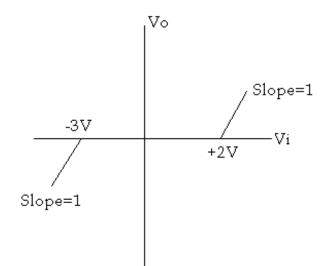

Circuit Diagram:

Waveforms:

Transfer Characteristics:


Let $V_{R1} = V_{R2} = V_R$, $V_{omax} = 4V$

 $V_{omax} = V_R + V_r$


 $V_R = V_{omax} - V_r = 4 - 0.7$

 $V_R = 3.3V$

Circuit Diagram:

Transfer Characteristics:

To Clip a sine wave between +2V and -3V level

 $V_{o} = V_{1} + V_{r}$

 $V_1 = V_0 - V_r = 2 - 0.7$

$$V_1 = 1.4V$$

 $V_o = V_2 - V_r$ -3 = $V_2 - 0.7$ $V_2 = -3 + 0.7$

 $V_2 = -2.3V$

Analog Electronics Lab Manual CLAMPING CIRCUITS

<u>Aim:</u> Design and test positive and negative clamping circuit for a given reference voltage.

Components required:

- Power Supply
- CRO
- Signal Generator
- Diode BY 127
- Resistors
- Capacitor

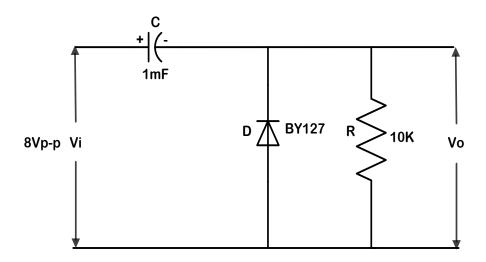
Design:

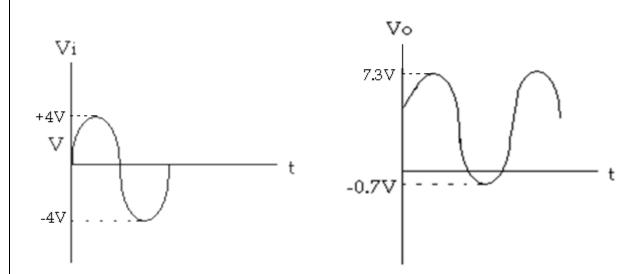
 R_f – Diode forward resistance = 100Ω

Rr – Diode Reverse resistance = $1M \Omega$

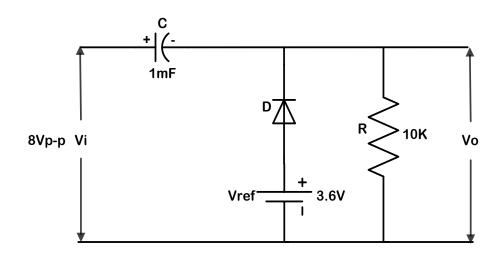
 $R = \sqrt{R_f}R_r = 10K\Omega$

- $RC \gg T$ let T = 1ms f(1KHz)
- Let RC = 10T

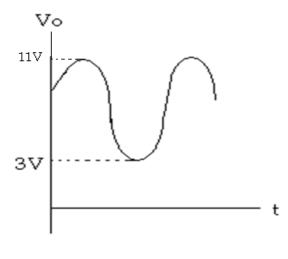

RC = 10ms


 $C = 1\mu F$

 $R = 10K\Omega$

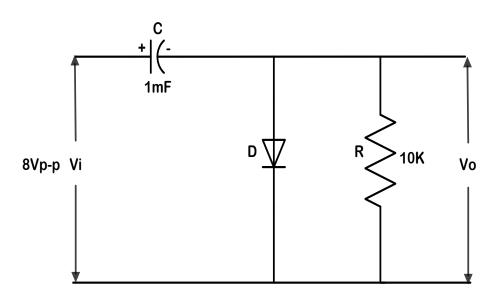

I) **Positive Clamping Circuits:**

Circuit Diagram:

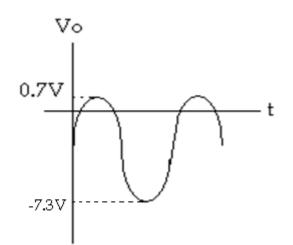


II) Design a Clamping Circuit to Clamp Negative Peak at +3V:

Waveforms:


 $V_{\rm o} = V_{\vartheta} + V_{\rm ref}$

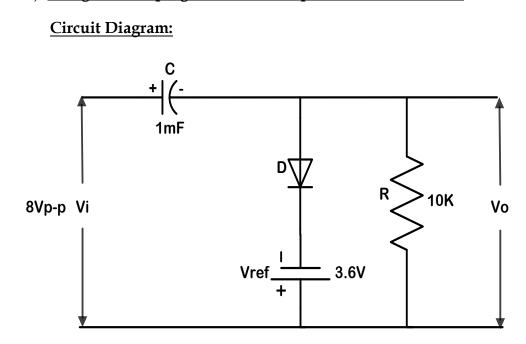
 $3 = -0.7 + V_{ref}$


 $V_{ref} = 3.7$

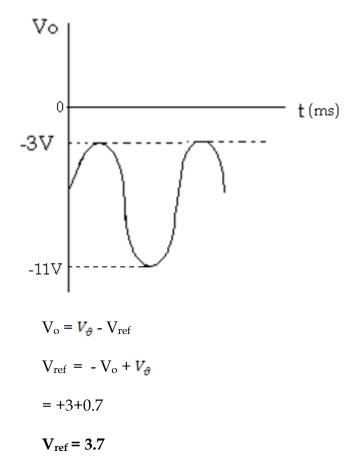
III) Negative Clamping Circuit:

Circuit Diagram:

Waveforms:

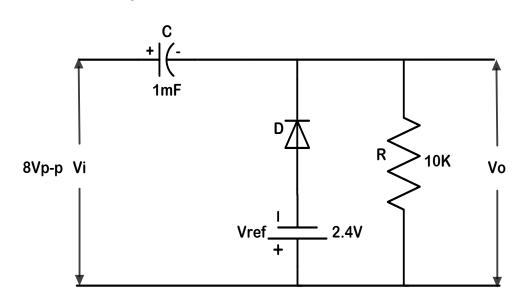


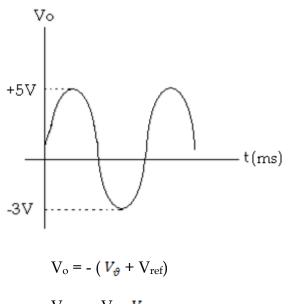
...

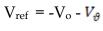

Analog Electronics Lab Manual

10ESL37

IV) **Design a Clamping Circuit to clamp Positive Peak at -3V:**

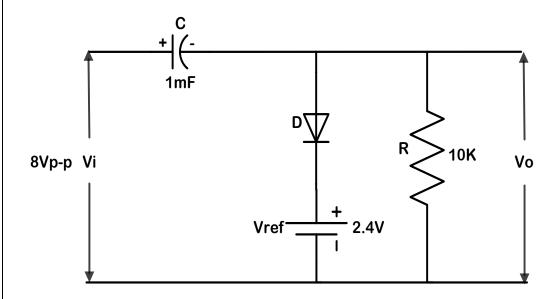

Waveforms:


Analog Electronics Lab Manual V) Design a Clamping Circuit to Clamp Negative Peak at -3V:

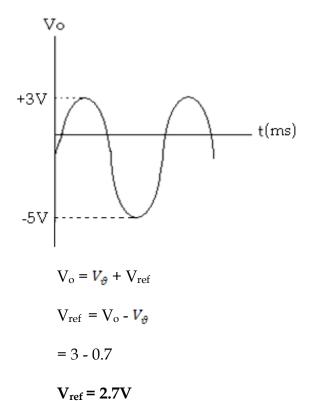

10ESL37

Circuit Diagram:

Waveforms:



= -0.7 - (-3)



VI) **Design a Clamping Circuit to clamp Positive Peak at +3V**:

Circuit Diagram:

Waveforms:

Procedure:

- Rig up the circuit.
- Apply sinusoidal input signal of 8V P-P from signal generator.
- Observe the output waveform in the CRO.
- Note down the readings from the CRO and compare it with the expected values.

Analog Electronics Lab Manual <u>RECTIFIER CIRCUITS</u>

<u>Aim:</u> To design and test Half wave, Full wave, Bridge Rectifier circuits with & without capacitor filter and determine the Ripple factor, Regulation & Efficiency.

Components required:

- Resistors
- Diodes
- 12-0-12V Transformer
- Capacitor

Calculations:

Assume $R_L = 4.7 K \Omega$, $C = 220 \mu F$

I) Half wave Rectifier:

1. Ripple Factor without Filter (Theoretical) = 1.21

2. Percentage Regulation = $\frac{R_f}{R_L} \times 100$ (R_f = Diode forward resistance)

3. Rectifier Efficiency $\eta = \frac{0.406}{1 + \frac{R_f}{R_L}} \simeq 40.6 \%$

4. Ripple Factor without Filter $Y = \frac{1}{2\sqrt{3} fR_{LC}}$ (f = frequency = 50Hz)

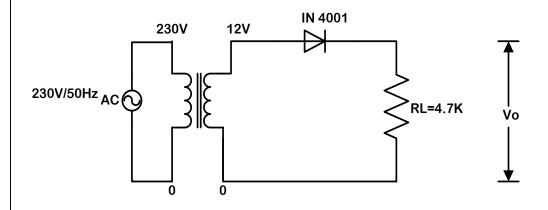
II) Full wave Rectifier:

- 1. Ripple Factor without Filter = 0.48
- 2. Percentage Regulation = $\frac{R_f}{R_L} \times 100$
- 3. Rectifier Efficiency $\eta = \frac{0.81}{1 + \frac{R_f}{R_L}} = 81 \%$

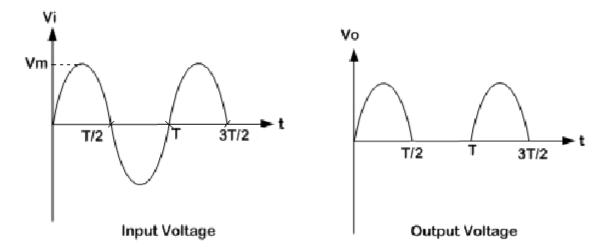
4. Ripple Factor without Filter $Y = \frac{1}{4\sqrt{3} f CR_L}$

III) Bridge Rectifier:

- 1. Ripple Factor without Filter = 0.48
- 2. Percentage Regulation = $\frac{R_f}{R_L} \times 100$
- 3. Rectifier Efficiency $\eta = \frac{0.81}{1 + \frac{R_f}{R_L}} = 81 \%$


Analog Electronics Lab Manual

10ESL37


4. Ripple Factor without Filter $Y = \frac{1}{4\sqrt{3} f R_L c}$

I) <u>Half wave Rectifier without Filter:</u>

Circuit Diagram:

Waveforms:

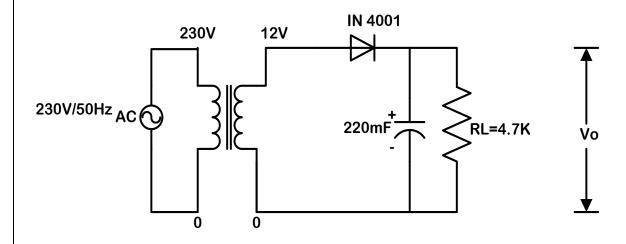
Peak output voltage V_m =

$$V_{dc} = \frac{Vm}{\pi} =$$

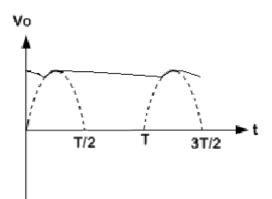
$$V_{rms} = \frac{Vm}{2} =$$

$$V_{ac} = \sqrt{V_{rms^2}} - V_{dc^2} =$$
Ripple Factor $Y = \frac{V_{ac}}{V_{dc}} =$
Rectifier efficiency $\eta = \frac{P_{dc}}{P_{ac}} = \frac{V_{dc^2}}{V_{rms^2}}$

=


Dept of E&C, CEC

Analog Electronics Lab Manual


10ESL37

% Regulation = $\frac{V_{dc(NL)-V_{dc(FL)}}}{V_{dc(FL)}} \times 100 =$

II) Half wave Rectifier with Filter:

Waveforms:

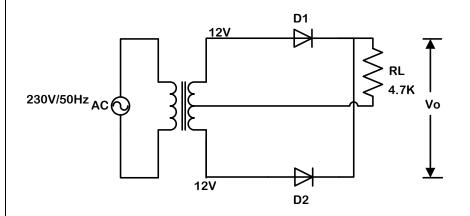
Peak output Voltage V_m =

Ripple Factor = $\frac{V_{ac}}{V_{dc}}$ =

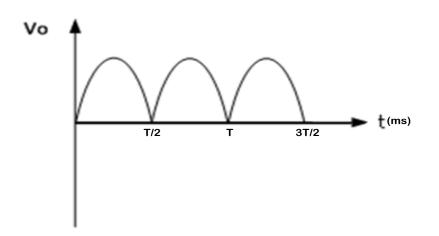
$$V_{dc} = \frac{V_m}{1 + \frac{1}{2fR_LC}} =$$

$$V_{ac} = \frac{v_{rp-p}}{2} =$$

$$V_{\rm rms} = \sqrt{V_{dc^2}} + V_{ac^2} =$$


Rectifier efficiency $\eta = \frac{P_{dc}}{P_{ac}} = \left[\frac{V_{dc}}{V_{rms}}\right]^2 =$

Analog Electronics Lab Manual


E&C, CEC % Regulation = $\frac{V_{dc(NL)-V_{dc(FL)}}}{V_{dc(FL)}} \times 100 =$

III) <u>Full wave Rectifier without Filter:</u>

Circuit Diagram:

Waveforms:

$$V_{dc} = \frac{2Vm}{\pi} =$$

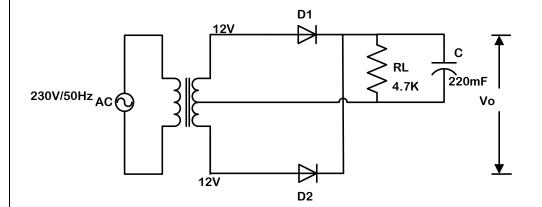
$$V_{rms} = \frac{V_m}{\sqrt{2}} =$$

$$V_{ac} = \sqrt{V_{rms^2}} - V_{dc^2} =$$

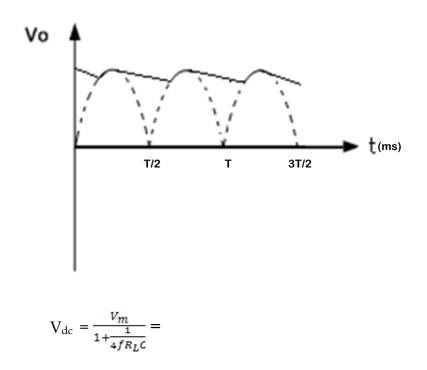
$$Y = \frac{V_{ac}}{V_{dc}} =$$

10ESL37

Dept of E&C, CEC


10ESL37

$$\eta = \frac{P_{dc}}{P_{ac}} = \left[\frac{V_{dc}}{V_{rms}}\right]^2 =$$

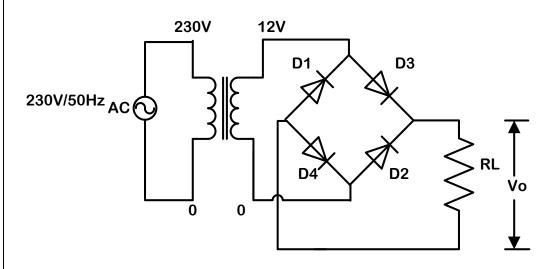

% Regulation =
$$\frac{V_{dc(NL)-V_{dc(FL)}}}{V_{dc(FL)}} \times 100 =$$

IV) Full wave Rectifier with Filter:

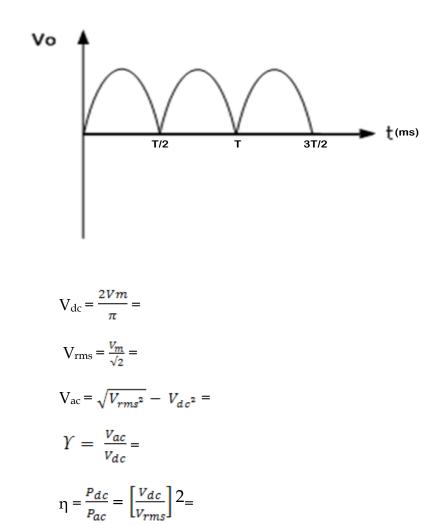
Circuit Diagram:

Waveforms:

$$V_{ac} = \frac{V_{r-(p-p)}}{2\sqrt{3}} =$$
$$Y = \frac{V_{ac}}{V_{dc}} =$$


Dept of E&C, CEC

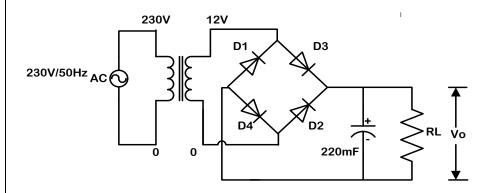
Analog Electronics Lab Manual


10ESL37

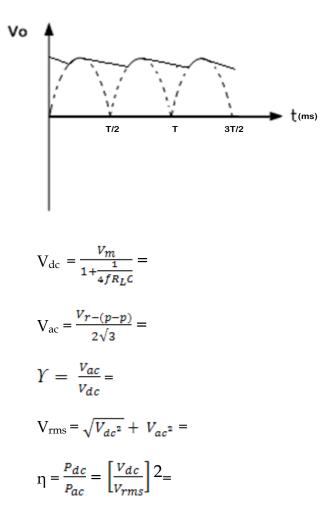
$$V_{\rm rms} = \sqrt{V_{dc^2}} + V_{ac^2} = \eta = \frac{P_{dc}}{P_{ac}} = \left[\frac{V_{dc}}{V_{rms}}\right]^2 = \eta$$

<u>Circuit Diagram:</u>

Waveforms:



Analog Electronics Lab Manual


% Regulation = $\frac{V_{dc(NL)} - V_{dc(FL)}}{V_{dc(FL)}} \times 100 =$

VI) Bridge Rectifier with Filter:

Circuit Diagram:

Waveforms:

10ESL37

Dept of E&C, CEC <u>Procedure:</u>

- Make the Connections as shown in the circuit diagram
- Apply 230V AC supply from the power mains to the primary of the transformer
- Observe the voltage across secondary to get V_m , the peak value in CRO
- Use relevant formula to find V_{dc} and V_{rms} of both Full wave and Half wave rectifier & draw the waveforms
- Find out the Ripple factor, Regulation and Efficiency by using the formula.

Conclusions:

RC-COUPLED AMPLIFIER

<u>Aim:</u> To design and setup an RC Coupled amplifier using BJT & to find the input and output impedance of the RC-Coupled amplifier.

Components Required:

- Transistor
- Capacitor
- Resistors
- Signal Generator
- CRO

Design:

Let $V_{cc} = 10V$ $I_c = 5mA$ $\beta = 100$

To find R_E:

$$V_{RE} = \frac{v_{cc}}{10} = \frac{10}{10} = 1V$$

i.e. $I_E R_E = 1V$
 $R_E = \frac{1V}{I_E} = \frac{1V}{I_C} = \frac{1V}{5mA} = 200\Omega$
Select $R_E = 220\Omega$

To find R_C:

$$V_{CE} = \frac{V_{cc}}{2} = \frac{10}{2} = 5V$$

Apply KVL to CE loop,

$$V_{CC} - I_C R_C - V_{CE} - V_{BE} = 0$$

10 - 5m R_C - 5 - 1 = 0
 R_C = 800 Ω

Select R_C as 820 Ω

To find R₁:

From the above biasing circuit,

$$V_B = V_{BE} + V_{RE} = 0.7 + 1 = 1.7V$$

Assume 10 I_B flows through R₁

$$\therefore R_1 = \frac{Vcc - V_B}{10 I_B} = \frac{10 - 1.7}{10 \times 0.050}$$
$$R_1 = 16.6 \text{K}\Omega$$

Select R_1 as $18K\Omega$

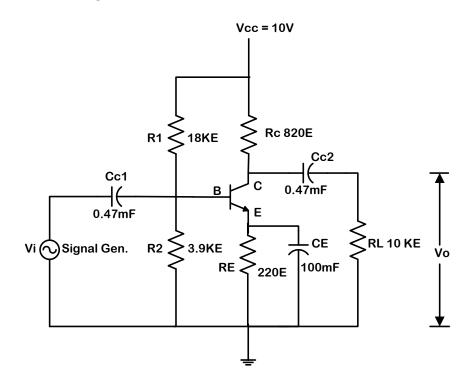
Assume 9 I_B flows through R2

$$\therefore R_2 = \frac{v_B}{9 \, l_B} = \frac{1.7}{9 \times 0.050 \, m} = 3.7 K \Omega$$

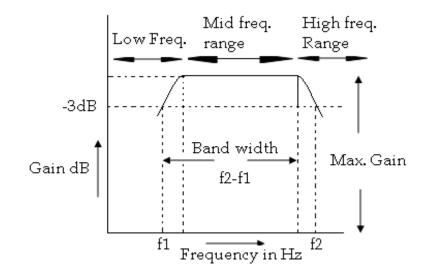
Select
$$R_2$$
 as $3.9K\Omega$

Bypass capacitor C_E and coupling Capacitor C_{C1} and C_{C2}

Let
$$X_{CE} = \frac{1}{10} R_E$$
 at $f = 100 \text{Hz}$
i.e. $\frac{1}{2\pi f C_E} = \frac{R_E}{10}$
 $\therefore C_E = \frac{10}{2\pi \times 100 \times 220} = 72.3 \mu F$


Select C_E as $100 \mu F$

Also use $C_{C1} = C_{C2} = 0.47 \ \mu F$


Procedure:

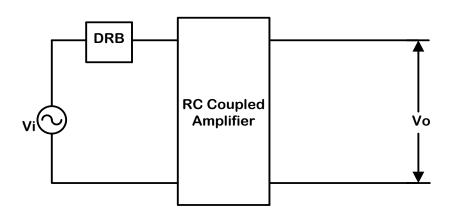
- Rig up the circuit
- Apply the sinusoidal input of 50m(P-P) and observe the input and output waveforms simultaneously on the CRO screen
- By varying the frequency of the input from Hz to maximum value and note down the output voltages
- Plot the frequency response (gain in dB vs log f) and determine the bandwidth from the graph

Circuit Diagram:

Waveforms:

Tabular Column:

Freq. in Hz	V _{o P-P}	$A_V = \frac{Vo}{V1}$	Gain in dB
		. –	$= 20 \log_{10} A_{\rm V}$
50 Hz			
100 Hz			
200 Hz			
300 Hz			
500 Hz			
1KHz			


Dept of E&C, CEC Analog Electronics Lab Manual		
1.2 KHz		
2 KHz 3 KHz 4 KHz		
200KHz 300KHz		
2 MHz		

To measure input impedance and output impedance:

I) Input impedance (Ri):

Procedure:


- Connect the circuit as shown
- Set the DRB to a minimum value
- Set the output to a convenient level and note down the output voltage
- Increase the DRB value till V₀ becomes half of the maximum amplitude
- The corresponding DRB value gives input impedance

II) Output impedance (R_O):

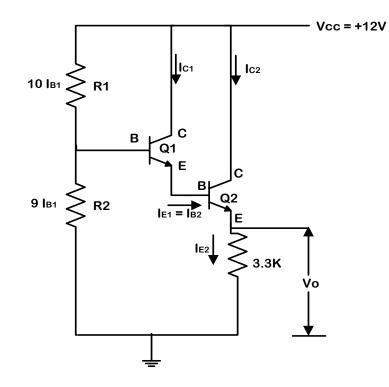
Procedure:

- Connect the circuit as shown
- Set the DRB to a maximum value
- Set the output to a convenient level and note down the output voltage
- Increase the DRB value till Vo becomes half of the maximum amplitude
- The corresponding DRB value gives input impedance

Result:

Bandwidth:	Hz	Z
Input Impedance:	Ω	
Output Impedance:	Ω	

Analog Electronics Lab Manual DARLINGTON EMITTER FOLLOWER


10ESL37

<u>Aim:</u> To determine a BJT Darlington Emitter Follower and determine the Gain, Input and Output impedances.

Components required:

- -Transistor (SL100)
- Resistors
- Signal Generator
- CRO
- Capacitors

Biasing Circuit:

Design:

Let V_{cc} = 12V

 $I_{c2} = 2mA$

$$\beta = 100$$

From Biasing Circuit, V_{B1} = 2V_{BE}+V_{RE}

 $V_{B1}=1.4+6$

 $V_{B1} = 7.4 V$

Let
$$V_{B2} = \frac{v_{CC}}{2} = \frac{12}{2} = 6V$$

 $I_{E2}R_E = 6V$

$$R_{\rm E} = \frac{6}{2_m} = 3K\Omega$$

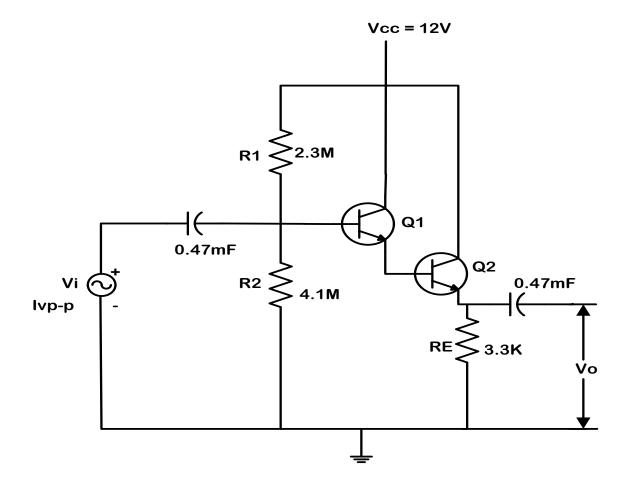
Select RE = $3.3K\Omega$

$$I_{B2} = \frac{I_{C2}}{\beta} = \frac{2m}{100} = 0.02 \text{mA}$$
$$I_{B1} = \frac{I_{C1}}{\beta} = \frac{I_{B2}}{\beta} = \frac{0.02m}{100} = 0.0002 \text{mA}$$

Assume 10 I_B flows through R_1

 $R_{1} = \frac{V_{CC} - V_{B1}}{10I_{B1}} = \frac{12 - 7.4}{10 \times 0.0002m} = \frac{4.6}{2 \times 10^{-5} \times 10^{-5}} = 2.3 M\Omega$

Assume 9 I_B flows through R₂


$$R_2 = \frac{V_B}{9 I_B} = \frac{7.4}{9 \times 0.0002 m} = \frac{7.4}{1.8 \times 10^{-3} \times 10^{-3}} = 4.1 M\Omega$$

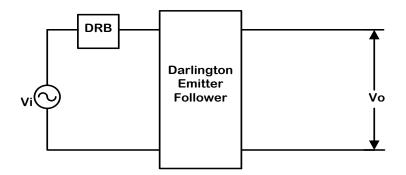
Choose the coupling capacitor C_{C1} and C_{C2} as $0.47 \mu F$

Procedure:

- Connect the circuit as shown in the circuit diagram.
- Set the Signal generator amplitude as 1V peak to peak and observe the input and output waveforms simultaneously on the CRO.
- By varying the frequency of the input from Hz range to MHz range and note the frequency range of the signal and corresponding voltage.
- The output voltage remains constant in mid frequency range.
- Tabulate the readings in tabular column.
- Plot the graph with frequency along X-axis and gain in dB along Y-axis.
- From the graph determine the bandwidth.

Circuit Diagram:

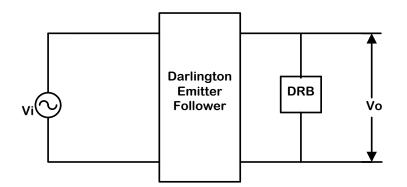
Tabular Column:


Freq. in Hz	V _{o P-P}	$A_V = \frac{Vo}{V1}$	Gain in dB = $20 \log_{10} A_V$
			- 20 10g10AV
50 Hz			
100 Hz			
200 Hz			
500 Hz			
1kHz			
2Khz			
3Khz			
4Khz			
200Khz			
300Khz			
3 MHz			

To measure input impedance and output impedance:

I) <u>Input impedance (Ri)</u>:

Procedure:


- Connect the circuit as shown
- Set the DRB to a minimum value
- Set the output to a convenient level and note down the output voltage
- Increase the DRB value till V₀ becomes half of the maximum amplitude
- The corresponding DRB value gives input impedance

II) Output impedance (R_O):

Procedure:

- Connect the circuit as shown
- Set the DRB to a maximum value
- Set the output to a convenient level and note down the output voltage
- Increase the DRB value till V₀ becomes half of the maximum amplitude
- The corresponding DRB value gives input impedance

Result:

 Bandwidth:
 Hz

 Input Impedance:
 Ω

 Output Impedance:
 Ω

R.C.PHASE SHIFT OSCILLATOR

Aim: To design and test the RC Phase shift Oscillator for the frequency of 1KHz.

Components required:

- -Transistor (BC 107)
- Resistors
- CRO
- Capacitors

Design:

 $V_{CC} = 12V$ $I_{C} = 2mA$ $V_{RC} = 40\% V_{CC} = 4.8V$ $V_{RE} = 10\% V_{CC} = 1.2V$ $V_{CE} = 50\% V_{CC} = 6V$

To find R_C, R₁, R_E & R₂

We Have,

 $V_{\rm RC} = I_{\rm C}R_{\rm C} = 4.8V$

 $R_C = 2.4 K \Omega$

Choose $R_C = 2.2K\Omega$

 $V_{RE} = I_E R_E = 1.2 V$

 $R_E = 600 \Omega$

Choose $R_E = 680\Omega$

 $h_{fe} = 100 \text{ (For BC 107)}$

$$I_{\rm B} = \frac{I_C}{h_{fe}} = 20 \text{mA}$$

Assume current through $R_1 = 10 I_B$ & through $R_2 = 9 I_B$ $VR_1 = V_{CC}-V_{R2}$ = 10VAlso, $VR_1 = 10 I_B R_1 = 10.1V$ $R_1 = 50 K \Omega$

Choose $R_1 = 47K\Omega$

$$VR_2 = V_{BE+}V_{RE}$$

= 0.7+1.2
= 1.9V

Also, $VR_2 = 9 I_B R_2 = 1.9V$

To find C_C & C_E

 $X_{CE} = \frac{1}{2\pi C_E} = \frac{1}{10} R_E = \frac{680}{10} = 68\Omega$ For $\vartheta = 20$ Hz $C_E = 117\mu F$

Choose $C_E = 220 \ \mu F$

$$X_{\rm CC} = \frac{1}{2\pi C_{\rm C}} = \frac{R_{\rm C}}{10} = 220\Omega$$

Choose $C_C = 47 \ \mu F$

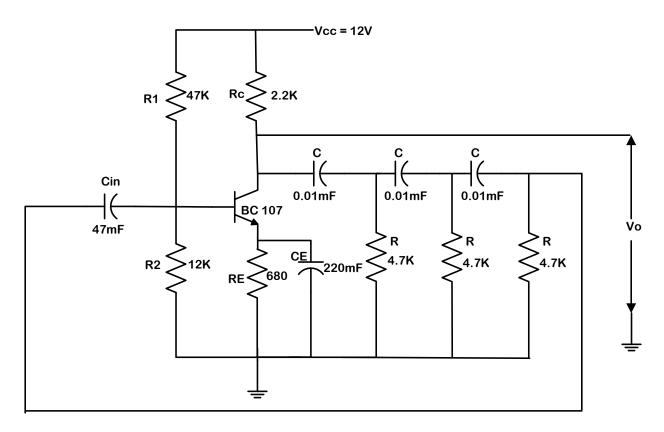
Design of **9** Selective Circuit:

Required ϑ of oscillations f = 1KHz

$$f = \frac{1}{2\pi R_{C\sqrt{6} + \frac{4R_C}{R}}}$$

Take R= $4.7K\Omega \& C=0.01\mu F$

Procedure:


- Rig up the circuit as shown in the figure
- Observe the sinusoidal output voltage.

Analog Electronics Lab Manual

10ESL37

• Measure the frequency and compare with the theoretical values.

Circuit Diagram:

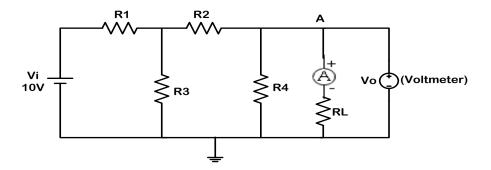
<u>Result:</u>

Frequency

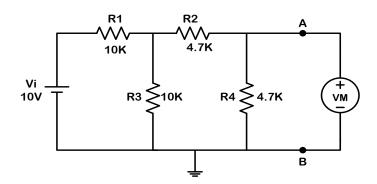
Theoretical: 1KHz

Practical:

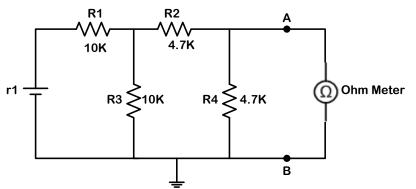
VERIFICATION OF NETWORK THEOREMS

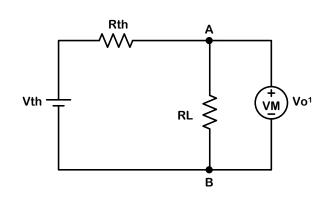

Aim: To verify Thevenin's & Maximum power transfer theorem for DC Circuits.

Components Required:


- Resistor
- DRB
- Ammeter (DC)
- Multimeter

I) <u>Thevenin's Theorem:</u> <u>Circuit Diagram:</u>


a) Given Resistor Network:


b) <u>Thevenin's Voltage - Experimental Setup:</u>

c) <u>Thevenin's Resistance – Experimental Setup:</u>

10ESL37

Calculations:

Assume $V_i = 10V$, $R_1=10K\Omega$, $R_2=4.7K\Omega$, $R_3=10K\Omega$, $R_4=4.7K\Omega$, $R_L=10K\Omega$

At node 1:

$$\frac{V_1 - 10}{10K} + \frac{V_1 - V_2}{4.7K} + \frac{V_1}{10K} = 0$$

$$V_1 \left[\frac{1}{10K} + \frac{1}{4.7K} + \frac{1}{10K} \right] - \frac{V_2}{4.7K} = \frac{1}{1K}$$

$$4.128 \times 10^{-4} V_1 - 2.128 \times 10^{-4} V_2 = 1m - \dots (1)$$

At node 2:

$$\frac{v_2 - v_1}{4.7K} + \frac{v_2}{4.7K} = 0$$

$$4.26 \times 10^{-4} V_2 - 2.128 \times 10^{-4} V_1 = 0 -----(2)$$

From (1) & (2)

$$V_{1} = 3.27V$$

$$V_{2} = V_{th} = V_{m} = 1.635V$$

$$R_{th} = ([(10 \parallel 10) + 4.7] \parallel 4.7)K$$

$$= ((\frac{10 \times 10}{20}) \times 4.7 \parallel 4.7)K$$

$$= ((5+4.7) \parallel 4.7)K$$

$$= ((5+4.7) \parallel 4.7)K$$

$$R_{th} = 3.16K\Omega$$

$$I_{L} = \frac{V_{th}}{R_{th} + R_{L}} = \frac{1.63}{3.16K + 10K} = 0.124 \text{mA}$$

$$V_{0^1} = I_L \times R_L$$

= 0.1238m × 10K = 1.24V
 $V_{0^1} = 1.24V$

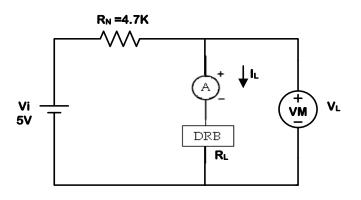
Procedure:

- Rig up the circuit as shown in the Fig I(a), measure the voltage across load R_L using DC Voltmeter. Note voltage as V_O.
- Connect the circuit as in Fig I(b), measure the voltage across terminals AB. Note down the voltage reading as V_{OC}.
- Rig up the circuit as shown in the Fig I(c), switch of the DC voltage source. The resistance 'r', represents internal resistance of the voltage source.
- Measure resistance across terminals AB using multimeter. Note down the resistance value as R₀.
- Now rig up the circuit as shown in the Fig I(d), switch on the power supply and measure the voltage drop across the load resistance R_L using the multimeter, note down voltage as V_0^1 .
- Compare the voltages V_O and V_O¹, they must agree each other, which verifies Thevenins theorem.

Observations:

Voltage across load R_L in the circuit Fig I(a), V_O =

Current through load R_L in the circuit Fig I(a), I_O =


Thevenins Voltage in Fig I(b), V_{OC} =

The venins Resistance in Fig I(c), $R_0 =$

Voltage across load R_L in Thevenins equivalent circuit in Fig I(d), V_O^1 =

II) Maximum Power Transfer Theorem:

Circuit Diagrams:

Dept of E&C, CEC Calculations:

Choose $R_N = 4.7K\Omega$

 $-5 + 4.7 \text{K I}_{\text{L}} + \text{R}_{\text{L}} \text{I}_{\text{L}} = 0$

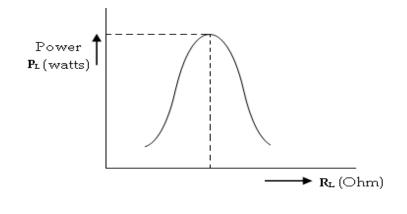
$$9.4 \text{K I}_{\text{L}} = 5$$

$I_L = 0.53 mA$

Maximum Power:

$$P = I_{L^2} R_L$$

= 1.32mw


Procedure:

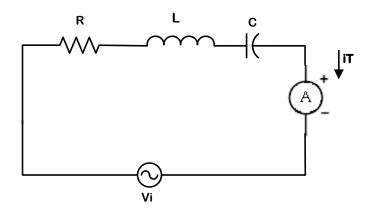
- Rig up the circuit as shown in the Fig II
- Set the input Dc voltage $V_i = 5V$
- Vary the resistance R_L using DRB in regular steps and note down the corresponding voltmeter and ammeter readings.
- Plot the graph of power Vs Resistance R_L.
- Determine the resistance R_L at which power is maximum (From the Graph)

<u>Tabular Column:</u>

$R_{L}(\mathbf{\Omega})$	I _L (mA)	V _L (volts)	$P_L = V_L I_L$ (watts)
1 K			
2 K			
3 K			
4 K			
4.1 K			
4.2 K			
•			
5 K			
6 K			
10 K			

Specimen Graph:

SERIES AND PARALLEL RESONANCE CIRCUITS


<u>Aim:</u> To test and verify the working/functioning of Series and Parallel resonance circuits and plots its response

Components Required:

- Resistor, Decade Resistance Box
- Decade Capacitance Box
- Decade Inductance Box
- Function Generator
- AC Voltmeter, Ammeter

I) Series Resonance:

Circuit Diagram:

Procedure:

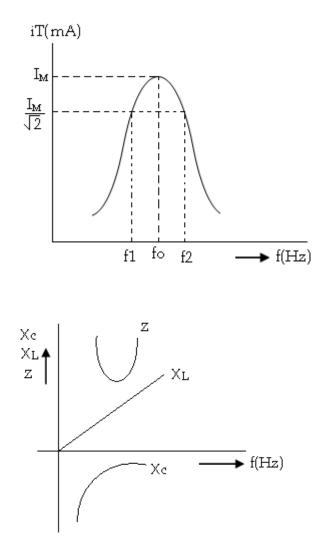
- Set up the circuit as in Fig
- Set input voltage V_m = 5v using signal generator and vary the frequency from 100Hz to 1MHz in regular steps.
- Note down he corresponding voltage and current.
- Plot the graph of Frequency Vs Current
- Find Resonance Frequency, Quality Factor and Bandwidth from the graph obtained and compare with the theoretical values.

Calculations:

Take R = 100Ω , L = 10mH, C = $0.1\mu F$

Resonance Frequency $f_0 = \frac{1}{2\pi\sqrt{LC}} =$

Quality factor of Series Resonance Circuit $Q_o = \frac{W_o L}{R} = \frac{1}{W_o CR}$


Analog Electronics Lab Manual

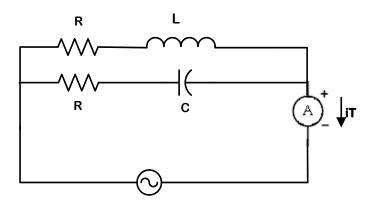
Bandwidth $B_W = \frac{W_0}{Q_0} =$

Observations:

Frequency (Hz)	Total Current i _T (mA)	Χ _C (Ω)	Χ _L (Ω)	$Z = \frac{v}{iT} \left(\Omega \right)$	$Z = \sqrt{R^2} + (X_L - X_o)^2(\Omega)$
1 KHz 2 KHz 3 KHz 4 KHz					
10 KHz					

Model Graph:

From the Graph,


Resonance Frequency $f_o =$

Bandwidth BW = $f_2 - f_1 =$

10ESL37

II) <u>Parallel Resonance:</u>

Circuit Diagram:

Procedure:

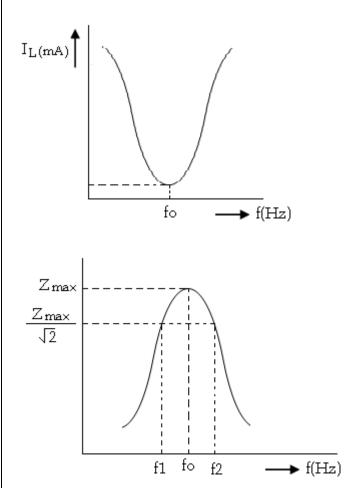
- Set up the circuit as in Fig
- Set input voltage V_m = 5v using signal generator and vary the frequency from 100Hz to 1MHz in regular steps.
- Note down he corresponding voltage and current readings and calculate impedance $Z = \frac{V_T}{I_T}$
- Plot the graph of Frequency Vs Impedance.
- Find Resonance Frequency, Quality Factor and Bandwidth from the graph obtained and compare with the theoretical values.

Calculations:

Take R_L = 4.7K Ω , R_C = 4.7K Ω , L = 10mH, C = 0.1 \mu F

Resonance Frequency fo = $\frac{1}{2\pi\sqrt{LC}}$, if $R_L = R_C$

Quality factor of Series Resonance Circuit $Q_0 = \frac{R}{W_0 L} = W_0 RC =$


Bandwidth $B_W =$

Observations:

 $V_m = 5V$

Frequency (Hz)	Total Current	$X_{C}(\Omega)$	Χ _L (Ω)	$Z = \frac{v}{iT} \left(\Omega \right)$
	i _T (mA)			iT
1 KHz				
2 KHz				
3 KHz				
4 KHz				
•				
•				
10 KHz				

Specimen Graph:

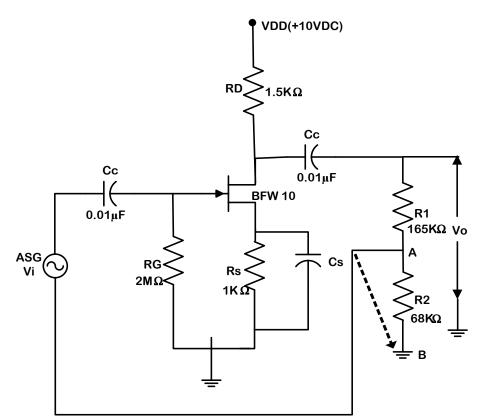
From the Graph,

Resonance Frequency $f_o =$

Bandwidth BW = $f_2 - f_1 =$

Results:

Parameters		Series Resonance	Parallel Resonance
Resonance Frequency	Theoretical		
	Observed		
Bandwidth	Theoretical		
	Observed		
Quality Factor	Theoretical		
	Observed		


VOLTAGE SERIES FEEDBACK AMPLIFIER

<u>Aim:</u> Design of a FET Voltage series feedback amplifier and determine the gain, frequency response, input and output impedances with and without feedback.

Components required:

- Power supply
- Multimeter
- CRO
- Function Generator
- AC mill voltmeters
- FET BW 10/11
- Resistors
- Capacitors

Circuit Diagram:

Design:

 $I_{DSS} = 10 mA$ $V_P = -3V$ (From Data Sheet)

Given, Q condition is I_D = 2mA, V_{DS} = 5V = $\frac{V_{DD}}{2}$ I_D = I_{DSS}[1- $(\frac{V_{GS}}{V_P})$]²

10ESL37

We Know that,

$$\left[\frac{I_D}{DSS}\right]^{1/2} = 1 - \left(\frac{V_{GS}}{V_P}\right)$$

$$1 - 0.44 = \frac{V_{GS}}{3}$$

Rs:

$$V_{\rm GS} = -0.55 \times 3 = -1.65V$$

 $I_D R_S = |V_{GS}|$

Choose $R_S = 1K\Omega$

T 7

R_D:

 $V_{DD} = V_{DS} + I_D (R_S + R_D)$

$$5 = 2 \times 10^{3} [1K + R_{D}]$$

Choose R_D = 1.5 K Ω

Igs = 1000nA (From Data Sheet) R_G:

Before conduction, minority carriers have to be drained out, for this R_G would be usually very large. Further input impedance of the amplifier would be equal to R_G itself.

Thus,

$$I_{gs} R_G = V_{gs}$$
$$R_G = \frac{V_{gs}}{I_{gs}} = 1.65 M\Omega$$

Choose $R_G = 2 M\Omega$

Cs: Should act as a short circuit at lowest frequency of interest

$$XC_{S} = \frac{1}{100} R_{S} = 10\Omega \text{ 1t 500Hz (say)}$$
$$\therefore C_{S} = \frac{1}{2\pi f X C_{S}} \Rightarrow C_{S} = 33\mu F$$

Choose
$$C_s = 33$$
 or $47\mu F$

Theoretically gain A_V without feedback is calculated as

$$A_{\rm V}$$
 = -gm $R_{\rm D}$

For the above circuit,

g_m is computed as bellow,

10ESL37

We have, $I_D = I_{DSS}(1 - \frac{V_{gs}}{V_P})^2$

Differentiating with respect to $\ensuremath{V_{gs}}$

$$\begin{aligned} \left| \frac{\partial I_D}{\partial V_{GS}} \right| &= 2I_{DSS} \left(1 + \frac{V_{GS}}{V_P} \right) \left(\frac{1}{V_P} \right) \\ \frac{\partial I_D}{\partial V_{GS}} &= g_m \qquad \therefore g_m = 2(10) \left(1 + \frac{1.65}{3} \right) \left(\frac{1}{3} \right) \\ g_m &= 10 \text{ mA/V} \\ \therefore |A_V| &= g_m \times R_D = 10 \times 1.5 = 15 \end{aligned}$$

To Design feedback circuit (R1, R2)

Let us Assume gain with feedback desired is 2

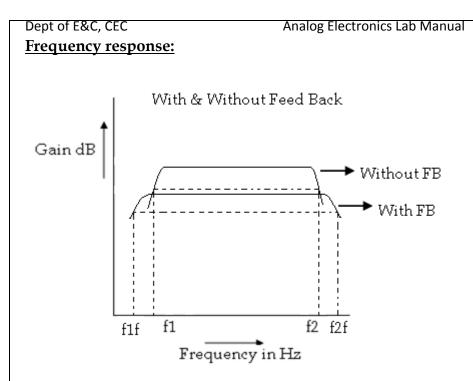
i.e. $A_{Vf} = 2$

Then
$$A_{Vf} = \frac{A_V}{1 + A_V \beta}$$
 where $\beta = \frac{R_2}{R_1 + R_2}$

(Practically we may not get $A_V = 15$;

It is better to measure A_V practically & design R₁ & R₂)

E.g: Say A_V = 4.8 (Practical Value)


$$\therefore A_{Vf} = \frac{A_V}{1 + A_V \beta}$$
$$\frac{2}{4.8} = \frac{1}{1 + 4.8\beta}$$

 $R_1 = 2.4 R_2$

Choose $R_2 = 68K\Omega$, $R_1 = 165K\Omega (150K\Omega + 15K\Omega)$

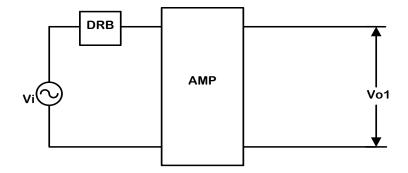
Procedure:

- Rig up the circuit as shown in the circuit diagram.
- Check Q conditions i.e,. measure V_{DS} and V_{GS}.
- Set Vi = 1V or 2V at 10 KHz on Audio signal Generator and measure gain A_V without feedback.
- Disconnect short of Green and Black terminal of signal generator to avoid grounding problem or isolate ground of signal generator.
- Measure V_{O} with feedback & find A_{Vf} the gain with feedback. Note A_{Vf} is less than AV
- To plot freq response, note output voltage with and without feedback from 100Hz to 10MHz

Here one can observe that effect of feedback is gain decreases but Bandwidth increases.

To measure input impedance and output impedance:

I) Input impedance (Zi):

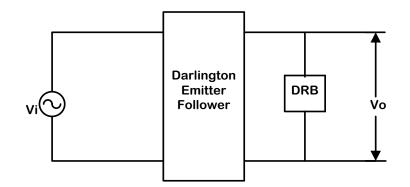

Procedure:

- Connect the circuit as shown
- Set all knobs of DRB to 0Ω
- Apply input sinusoidal wave (20 to 40 mV_{p-p})
- Fix input frequency in mid freq range (say 15 KHz) and measure output voltage V_0 .

10ESL37

• Increase resistance on DRB, till V₀ reduces to half the value this gives $V_{01} = \frac{V_0}{2}$. The

DRB values now gives input impedance Zi of amplifier.



II) <u>Output impedance (R₀):</u>

Procedure:

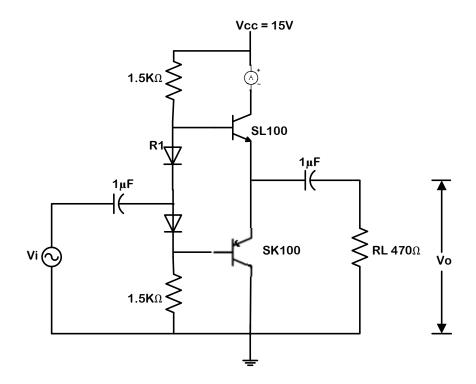
- Connect the circuit as shown
- Set all knobs of DRB to maximum value.
- Apply input sinusoidal wave (20 to 40 mV)
- Fix input frequency 15 KHz and measure output voltage.
- Decrease resistance on DRB, till output voltage reduces to half the value of V₀. Now

 $V_{O2} = \frac{v_o}{2}$. The DRB values now gives output impedance Zo of amplifier.

Observation:

Gain with feedback :_____ Gain without feedback :_____

Frequency	Vo	Av	A _{VF}	Zi	Zo
100 Hz					
200 Hz					
•					
1kHz					
2KHz					
100 KHz					


CLASS 'B' PUSH-PULL AMPLIFIER

<u>Aim</u>: To design and test the performance of transformer less Class 'B' Push-Pull Amplifier and to determine its conversion efficiency.

Components Required:

- Diodes IN 4001
- Transistor SL100, SK100
- Resistors
- Capacitors

Circuit Diagram:

Design:

Given V_{CC} = 15V, R_L = 470 Ω

$$V_{CE1} = V_{CE2} = \frac{v_{CC}}{2} = 7.5 V$$

$$V_{B1} = V_{CE2} + V_{BE1} = 7.5 + 0.7 = 8.2V$$

Assume $I_1 = 5mA$

$$R_{1} = \frac{V_{CC} - V_{B1}}{I_{1}} = 1.36 \text{K}\Omega$$
$$R_{2} = \frac{V_{R2}}{I_{1}} = \frac{V_{B1} - V_{D1} - V_{D2}}{I_{1}} = 1.36 \text{K}\Omega$$

Choose $R_1 = R_2 = 1.5K\Omega$

Analog Electronics Lab Manual

10ESL37

Choose $C_i = C_2 = 1 \mu F$

 $P_{i}(dc) = V_{CC} I_{dc}$ $P_{o}(ac) = \frac{V_{m^{2}}}{2}$

Efficiency
$$\eta = \frac{P_0(ac)}{P_{i(dc)}}$$

Procedure:

- Connect the circuit as shown in the circuit diagram.
- Apply the input voltage $V_i = 5V$
- Keeping the voltage constant, vary the frequency from 100Hz to 1MHz in regular steps and note down the output voltage in each case.
- Plot the gain Vs Frequency graph.
- Note down the dc current I_{dc}
- Calculate the efficiency.

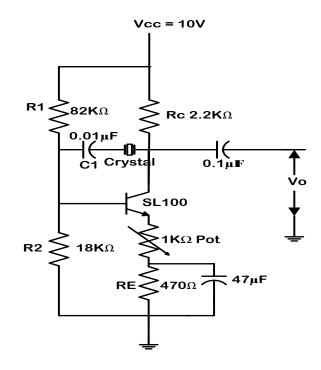
Observations:

 $V_i = 5V$

Freq. in Hz	Vo	Gain= ^{Vo} / _{Vi}	Gain in dB = $20 \log \frac{Vo}{Vi}$
50 Hz 100 Hz 200 Hz 500 Hz 1 KHz 2 KHz 3 KHz 5 KHz 10 KHz			
1MHz 2 MHz			

Result:

Efficiency $\eta =$


CRYSTAL OSCILLATOR

<u>Aim</u>: To design and test the performance of BJT - Crystal Oscillator for $f_0 > 100$ KHz.

Components Required:

- Crystal 2MHz
- Transistor SL100
- Resistors
- Capacitors

Circuit Diagram:

Design:

Given
$$V_{CC} = 10V$$
, $\beta = 200$, $I_C = 2mA$

To find R_E:

$$V_{RE} = \frac{V_{CC}}{10} = \frac{10}{10} = 1V$$
$$I_E R_E = 1, I_E \simeq I_C$$
$$R_E = \frac{V_{RE}}{I_C} = \frac{V_{RE}}{I_C} = \frac{1}{2 \times 10^{-3}} = 500\Omega$$

Choose
$$R_E = 470\Omega$$

To find R_C:

Applying KVL

 $[V_{CE} = \frac{V_{cc}}{2}]$

$$V_{CC} - I_C R_C - V_{CE} - V_{RE} = 0$$

$$10 - 2 \times 10^{-3} R_{C} - 5 - 1 = 0$$

 $4 - 2 \times 10^{-3} R_{C} = 0$

 $R_C = 2K\Omega$

Choose $R_C = 2.2K\Omega$

From the biasing circuit

$$V_{B} = V_{BE} + V_{RE}$$
$$= 0.7 + 1$$
$$= 1.7V$$

To find I_B:

$$I_{\rm B} = \frac{I_C}{I_B} = \frac{2 \times 10^{-3}}{200} = 0.01 \,\mathrm{mA}$$

Assume 10 I_B flows through R₁

$$R_1 = \frac{V_{CC} - V_B}{10I_B} = \frac{10 - 1.7}{10 \times 0.01m} = 83K\Omega$$

Choose $R_1 = 82K\Omega$

Assume 9 I_B flows through R₂

$$R_2 = \frac{V_B}{9 I_B} = \frac{1.7}{9 \times 0.01 m} = 18 \text{ K}\Omega$$

Choose $R_2 = 18K\Omega$

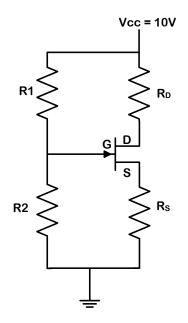
Assume coupling capacitor C_{C1} and C_{C2} as $0.47 \mu F$

Procedue:

- Make the connections as shown in circuit diagram.
- Vary 1K Ω potentiometer so as to get an undistorted sine wave at the output.
- Note down the frequency of the output wave and compare it with the theoretical frequency of oscillation.

Result:

Frequency : Theoretical: 2MHz Practical:


FET HARTLEY & COLPITTS OSCILLATOR

Aim: To design Hartley & Colpitts Oscillator for given frequency using FET.

Components Required:

- FET (BFW11)
- Resistors
- Capacitors
- CRO

Biasing Circuit:

Design:

 $V_{DD} = 10V, V_{DS} = \frac{V_{DD}}{2} = 5V$ For ϑ FET, $I_{DSS} = 11.5mA$ $V_P = -3V$ $V_{GS} = -1.7V$ $I_D = I_{DSS} [1 - \frac{V_{GS}}{V_P}]^2$ $I_D = 11.5 \times 10^{-3} [1 - \frac{1.7}{3}]^2$ $I_D = 2mA$

Applying KVL to the outer loop

10ESL37

$$V_{\rm DD} = I_{\rm D}(R_{\rm D} + R_{\rm S}) + V_{\rm DS}$$

$$R_{\rm D} + R_{\rm S} = \frac{V_{DD} - V_{DS}}{I_D} = \frac{10 - 5}{2m} = 2.1 \text{K}\Omega$$

Let
$$R_D = 1K\Omega \& R_S = 1.5K\Omega$$

Use 1K pot in series with 1.5K Ω for R_S

$$\frac{V_{DD}R_2}{R_1 + R_2} = V_{GS} + V_{RS}$$

$$\frac{R_2}{R_1 + R_2} = \frac{V_{GS} + I_DR_S}{V_{DD}} = \frac{-1.7 + (2 \times 10^{-3}) \times 1.5K}{10}$$

$$\frac{R_2}{R_1 + R_2} = 0.13$$

$$R_2 = 0.13R_1 + 0.13R_2$$

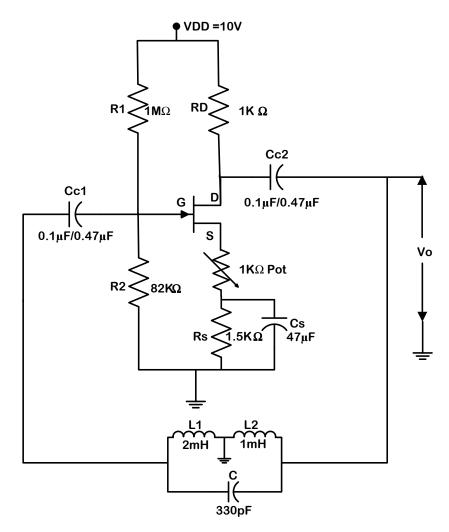
$$0.87R_2 = 0.13R_1$$

$$\frac{R_2}{R_1} = \frac{0.13}{0.87} = 0.149$$

$$R_1 = 1M\Omega$$

 R_2 = 0.149 R_1

 R_2 = 150K Ω (Choose R_2 as 82K Ω)


Hartley Oscillator:

Tank Circuit Design:

$$f_{O} = \frac{1}{2\pi\sqrt{LC}}$$
 Where L = L₁ + L₂

$$f_{O} = 100 \text{KHz}$$

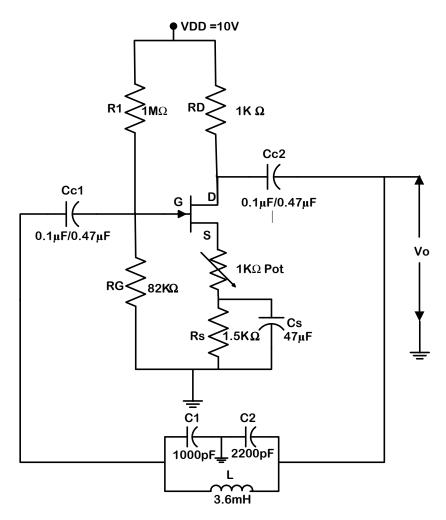
L = $\frac{1}{4\pi^{2}f_{0^{2}C}}$ let C = 330pF
L = $\frac{1}{4\times(3.14)^{2}(100\times10^{3})^{2}\times330\times10^{-12}}$
L = 7.68mH
L₁ = 5mH
L₂ = 2.6mH

Circuit Diagram:

Colpitts Oscillator:

$$f_{\rm O} = \frac{1}{2\pi\sqrt{LC_{eq}}}$$
 $C = \frac{C_1C_2}{C_1+C_2}$

 $f_0 = 100 KHz$


$$C = \frac{1000 \times 2200 \times 10^{-24}}{(1000 + 2200) \times 10^{-12}}$$

$$C = 687.5 pF$$

$$L = \frac{1}{4\pi^2 f_{o^2 C}} = \frac{1}{4 \times (3.14)^2 (100 \times 10^3)^2 \times 687.5 \times 10^{-12}}$$

L = 3.6mH

Circuit Diagram:

Procedue:

- Make the connections as shown in circuit diagram.
- Observe the sinusoidal output voltage.
- Measure the frequency and compare with the theoretical values.

Result:

Hartley Oscillator:

Theoretical Frequency	:100KHz
Practical Frequency	:
Amplitude of the sine wave	:
<u>Colpitts Oscillator:</u>	
Theoretical Frequency	:100KHz
Practical Frequency	:
Amplitude of the sine wave	:
	56

VIVA-VOCE QUESTIONS

- [1] What are conductors, insulators, and semi-conductors? Give examples.
- [2] Name different types of semiconductors.
- [3] What are intrinsic semiconductors and extrinsic semiconductors?
- [4] How do you get P-type and N-type semiconductors?
- [5] What is doping? Name different levels of doping.
- [6] Name different types of Dopants. .
- [7] What do you understand by Donor and acceptor atoms?
- [8] What is the other name for p-type and N-type semiconductors?
- [9] What are majority carriers and minority carriers?
- [10] What is the effect of temperature on semiconductors?
- [11] What is drift current?.
- [12] What is depletion region or space charge region?
- [13] What is junction potential or potential barrier in PN junction?
- [14] What is a diode? Name different types of diodes and name its applications
- [15] What is biasing? Name different types w.r.t. Diode biasing
- [16] How does a diode behave in its forward and reverse biased conditions?
- [17] What is static and dynamic resistance of diode?
- [18] Why the current in the forward biased diode takes exponential path?
- [19] What do you understand 1?y Avalanche breakdown and zener breakdown?
- [20] Why diode is called unidirectional device.
- [21] What is PIV of a diode
- [22] What is knee voltage or cut-in voltage?
- [23] What do you mean by transition capacitance or space charge capacitor?
- [24] What do you mean by diffusion capacitance or storage capacitance?
- [25] What is a transistor? Why is it called so? .
- [26] Name different types, of transistors?
- [27] Name different configurations in which the transistor is operated
- [28] Mention the applications of transistor. Explain how transistor is used as switch
- [29] What is transistor biasing? Why is it necessary?
- [30] What are the three different regions in which the transistor works?
- [31] Why transistor is called current controlled device?
- [32] What is FET? Why it is called *so*?
- [33] What are the parameters of FET?
- [34] What are the characteristics of FET?
- [35] Why FET is known as voltage controlled device?
- [36] What are the differences between BJT and FET?
- [37] Mention applications of FET. What is pinch off voltage.
- [38] What is an amplifier? What is the need for an amplifier circuit?
- [39] How do you classify amplifiers?,
- [40] What is faithful amplification? How do you achieve this?
- [41] What is coupling? Name different types of coupling
- [42] What is operating point or quiescent point?
- [43] What do you mean by frequency response of an amplifier?

- [44] What are gain, Bandwidth, lower cutoff frequency and upper cutoff frequency?
- [45] What is the figure of merit of an amplifier circuit?
- [46] What are the advantages of RC coupled amplifier?
- [47] Why a 3db point is taken to calculate Bandwidth?
- [48] What is semi-log graph sheet? Why it is used to plot frequency response?
- [49] How do you test a diode, transistor, FET?
- [50] How do you identify the terminals of Diode, Transistor& FET?
- [51] Mention the type number of the devices used in your lab.
- [52] Describe the operation of NPN transistor. Define reverse saturation current.
- [51] Explain Doping w.r.t. Three regions of transistor
- [52] Explain the terms hie/hib, hoe/hob, hre/hrb, hre/hfb.
- [53] Explain thermal runaway. How it can be prevented.
- [54] Define FET parameters and write the relation between them.
- [55] What are Drain Characteristics and transfer characteristics?
- [56] Explain the construction and working of FET
- [57] What is feedback? Name different types.
- [58] What is the effect of negative feedback on the characteristics of an amplifier?
- [59] Why common collector amplifier is known as emitter follower circuit?
- [60] What is the application of emitter follower ckt?
- [61] What is cascading and cascoding? Why do you cascade the amplifier ckts.?
- [62] How do you determine the value of capacitor?
- [63] Write down the diode current equation.
- [64] Write symbols of various passive and active components
- [65] How do you determine the value of resistor by color code method?
- [66] What is tolerance and power rating of resistor?
- [67] Name different types of resistors.
- [68] How do you classify resistors?
- [69] Name different types of capacitors.
- [70] What are clipping circuits? Classify them.
- [71] Mention the application of clipping circuits.
- [72] What are clamping circuits? Classify them
- [73] What is the other name of clamping circuits?
- [74] Mention the applications of clamping circuits.
- [75] What is Darlington emitter follower circuit?
- [76] Can we increase the number of transistors in Darlington emitter follower circuit?
- [77] Name different types of Emitter follower circuits.
- [78] What is an Oscillator? Classify them.
- [79] What are damped & Un-damped Oscillations?
- [80] What are Barkhausen's criteria?
- [81] What type of oscillator has got more frequency stability?
- [82] What is the disadvantage of Hartley & Colpit's Oscillator?
- [83] Why RC tank Circuit Oscillator is used for AF range?
- [84] Why LC tank Circuit Oscillator is used for RF range?
- [85] What type of feedback is used in Oscillator circuit?
- [86] In a Transistor type No. SL 100 and in Diode BY 127, what does SL and BY stands for?
- [87] Classify Amplifiers based on: operating point selection.

- [88] What is the efficiency of Class B push pull amplifier?
- [89] What is the drawback of Class B Push pull Amplifier? How it is eliminated.
- [90] What is the advantage of having complimentary symmetry push pull amplifier?
- [91] What is Bootstrapping? What is the advantage of bootstrapping?
- [92] State Thevenin's Theorem and Maximum power transfer theorem.
- [93] What is the figure of merit of resonance circuit?
- [94] What is the application of resonant circuit?
- [95] What is a rectifier? Classify.
- [96] What is the efficiency of half wave and full wave rectifier?
- [97] What is the advantage of Bridge rectifier of Centre tapped type FWR.
- [98] What is the different between Darlington emitter follower circuit & Voltage follower circuit using Op-Amp. Which is better.

For more information and queries visit:

BIBLIOGRAPHY

- [1] "Electronic devices and circuit theory", Robert L. Boylestad and Louis Nashelsky.
- [2] "Integrated electronics", Jacob Millman and Christos C Halkias.
- [3] "Electronic devices and circuits", David A. Bell.
- [4] "Electronic devices and circuits", G.K.Mittal.

For more information and queries visit:

www.ajaybolar.weebly.com