10ES32 - Analog Electronic Circuits

Assignment-II

Note: i) Write the assignment in a A4 size paper
iii) Mention your USN, name and section on the top right corner of first page
iii) Assume the missing data suitably
iv) Submit the assignment on or before 11.00 AM, Monday, 7/10/2013

1. Explain transistor switching network.
2. Derive the expressions for S, S^{\prime}, and S^{\prime} ' for i) Emitter Bias, ii) Voltage Divider Bias, and iii) Collector Feedback Bias.
3. Design a voltage divider bias circuit to get the Q point $\mathrm{I}_{\mathrm{CQ}}=3 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{CEQ}}=7 \mathrm{~V}$.
4. Design a emitter bias circuit to get the Q point $\mathrm{I}_{\mathrm{CQ}}=2.1 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{CEQ}}=5 \mathrm{~V}$.
5. Design a collector feedback bias circuit to get the Q point $\mathrm{I}_{\mathrm{CQ}}=1 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{CEQ}}=6 \mathrm{~V}$.
6. For a voltage divider bias circuit, $\mathrm{R}_{1}=62 \mathrm{~K} \Omega, \mathrm{R}_{2}=9.1 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{E}}=680 \Omega, \mathrm{R}_{\mathrm{C}}=3.9 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{cc}}=16 \mathrm{~V}, \beta=80$, calculate S and S^{\prime}.
7. Determine the stability factor $\mathrm{S}(\beta)$ and the change in Ic from $25^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ for the transistor with $\beta\left(25^{\circ} \mathrm{C}\right)=50$ and $\beta\left(100^{\circ} \mathrm{C}\right)=100$ for the following bias arrangement.
a) Fixed bias with $R_{B}=330 \mathrm{~K} \Omega$
b) Emitter bias with $R_{B} / R_{E}=5$
c) Voltage divider bias with $\mathrm{R}_{\mathrm{TH}} / \mathrm{R}_{\mathrm{E}}=1.5$

Also calculate I_{CQ} at the $100^{\circ} \mathrm{C}$ in each case if I_{CQ} at $25^{\circ} \mathrm{C}$ is 3 mA
8. What is Barkhausen criterion? Explain how oscillations start in an oscillator.
9. Design a transistor Hartley oscillator to generate a frequency of 175 KHz . Consider $\mathrm{H}_{\mathrm{fe}}=45$.
10. Explain the merits and demerits of RC phase shift oscillator
11. A quartz crystal has $L=0.12 \mathrm{H}, \mathrm{C}=0.04 \mathrm{pF}, \mathrm{C}_{\mathrm{M}}=1 \mathrm{pF}$ and $\mathrm{R}=9.2 \mathrm{k} \Omega$. Find i) Series resonant frequency, ii) Parallel resonant frequency and iii) Quality factor.

